Skip to main content

Semilinear Classical Damped Wave Models

  • Chapter
  • First Online:
Methods for Partial Differential Equations

Abstract

The diffusion phenomenon between linear heat and linear classical damped wave models of Section 14.2.3 explains the parabolic character of classical damped wave models with power nonlinearities from the point of decay estimates which are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Brenner, On space-time means and strong global solutions of nonlinear hyperbolic equations. Math. Z. 201, 45–55 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. H. Brezis, L.A. Peletier, D. Terman, A very singular solution of the heat equation with absorption. Arch. Ration. Mech. Anal. 95(3), 185–209 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. M. D’Abbicco, The threshold of effective damping for semilinear wave equations. Math. Meth. Appl. Sci. 38, 1032–1045 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. M. D’Abbicco, S. Lucente, A modified test function method for damped wave equations. Adv. Nonlinear Stud. 13, 867–892 (2013)

    MathSciNet  MATH  Google Scholar 

  5. M. D’Abbicco, S. Lucente, M. Reissig, A shift in the Strauss exponent for semilinear wave equations with a not effective damping. J. Differ. Equ. 259, 5040–5073 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Ginibre, G. Velo, The global Cauchy problem for the nonlinear Klein-Gordon equation. Math. Z. 189, 487–505 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Ikehata, M. Ohta, Critical exponents for semilinear dissipative wave equations in \(\mathbb {R}^N\). J. Math. Anal. Appl. 269, 87–97 (2002)

    Google Scholar 

  8. R. Ikehata, K. Tanizawa, Global existence of solutions for semilinear damped wave equations in \(\mathbb {R}^N\) with noncompactly supported initial data. Nonlinear Anal. 61(7), 1189–1208 (2005)

    Google Scholar 

  9. R. Ikehata, K. Nishihara, H. Zhao, Global asymptotics of solutions to the Cauchy problem for the damped wave equation with absorption. J. Differ. Equ. 226, 1–29 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. G. Karch, Selfsimilar profiles in large time asymptotics of solutions to damped wave equations. Stud. Math. 143(2), 175–197 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Kawashima, M. Nakao, K. Ono, On the decay property of solutions to the Cauchy problem of the semilinear wave equation with a dissipative term. J. Math. Soc. Jpn. 47(4), 617–653 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Keel, T. Tao, Small data blow-up for semilinear Klein-Gordon equations. Am. J. Math. 121, 629–669 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. T. Narazaki, L p − L q estimates for damped wave equations and their applications to semi-linear problem. J. Math. Soc. Jpn. 56, 585–626 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. K. Nishihara, Diffusion phenomena of solutions to the Cauchy problem for the damped wave equations. Sugaku Expositions 26(1), 29–47 (2013)

    MathSciNet  MATH  Google Scholar 

  15. K. Nishihara, H. Zhao, Decay properties of solutions to the Cauchy problem for the damped wave equation with absorption. J. Math. Anal. Appl. 313, 598–610 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. W. Nunes do Nascimento, Klein-Gordon models with non-effective potential. Ph.D. thesis, Universidade Federal de São Carlos/Technical University Bergakademie Freiberg, (2016), 183pp.

    Google Scholar 

  17. W. Nunes do Nascimento, A. Palmieri, M. Reissig, Semi-linear wave models with power non-linearity and scale-invariant time-dependent mass and dissipation. Math. Nachr. 290, 1779–1805 (2017)

    Google Scholar 

  18. A. Palmieri, Linear and non-linear sigma-evolution equations. Master thesis, University of Bari (2015), 117pp.

    Google Scholar 

  19. F. Pizichillo, Linear and non-linear damped wave equations. Master thesis, University of Bari, (2014), 62pp.

    Google Scholar 

  20. W.A. Strauss, On weak solutions of semi-linear hyperbolic equations. An. Acad. Brasil. Cienc. 42, 645–651 (1970)

    MathSciNet  MATH  Google Scholar 

  21. G. Todorova, B. Yordanov, Critical exponent for a nonlinear wave equation with damping. J. Differ. Equ. 174, 464–489 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Wirth, Asymptotic properties of solutions to wave equations with time-dependent dissipation. Ph.D. thesis, Technical University Bergakademie Freiberg (2005), 146pp.

    Google Scholar 

  23. Q.S. Zhang, A blow-up result for a nonlinear wave equation with damping: the critical case. C. R. Acad. Sci. Paris Ser. I Math. 333, 109–114 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ebert, M.R., Reissig, M. (2018). Semilinear Classical Damped Wave Models. In: Methods for Partial Differential Equations. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-66456-9_18

Download citation

Publish with us

Policies and ethics