Skip to main content

Gastrointestinal and Hepatic Physiology in Liver Disease

  • Chapter
  • First Online:
Hepatic Critical Care

Abstract

Portal hypertension develops as a consequence of increased resistance to portal blood flow as well as increased portal blood flow due to splanchnic vasodilation. Increased resistance due to cirrhosis is due to both structural changes from increased vascular resistance as well as dynamic variables due to release of endothelial vasodilators (such as nitrous oxide) and increased production of vasoconstrictors (such as endothelin 1). While portal hypertension is initially asymptomatic, its development is a necessary precursor for many of the potentially lethal complications related to liver disease. Portosystemic collateral vessels, or varices, develop as an inefficient means to decompress the portal system and can result in esophageal or gastric hemorrhage associated with high morbidity and mortality. A compensatory activation of neurohormonal mechanism to reduced effective circulating volume leads to sodium and water retention results in ascites and eventually to hepatorenal syndrome. Acute liver failure is characterized as the acute development of liver injury, hepatic encephalopathy, and impaired synthetic dysfunction and leads to hemodynamic instability and multi-organ system failure. Acute on chronic liver failure is a recently defined syndrome characterized by hemodynamic abnormalities with complications resulting from portal hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Eipel C, Abshagen K, Vollmar B. Regulation of hepatic blood flow: the hepatic arterial buffer response revisited. World J Gastroenterol. 2010;16(48):6046–57.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lee WM, et al. Acute liver failure: summary of a workshop. Hepatology. 2008;47(4):1401–15.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chung RT, et al. Pathogenesis of liver injury in acute liver failure. Gastroenterology. 2012;143(3):e1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Larsen FS, et al. High-volume plasma exchange in patients with acute liver failure: an open randomised controlled trial. J Hepatol. 2016;64(1):69–78.

    Article  PubMed  Google Scholar 

  5. Jalan R, et al. Toward an improved definition of acute-on-chronic liver failure. Gastroenterology. 2014;147(1):4–10.

    Article  PubMed  Google Scholar 

  6. Sarin SK, et al. Acute-on-chronic liver failure: consensus recommendations of the Asian Pacific Association for the study of the liver (APASL). Hepatol Int. 2009;3(1):269–82.

    Article  PubMed  Google Scholar 

  7. Arroyo V, et al. Acute-on-chronic liver failure: a new syndrome that will re-classify cirrhosis. J Hepatol. 2015;62(1 Suppl):S131–43.

    Article  PubMed  Google Scholar 

  8. Gustot T, et al. Clinical course of acute-on-chronic liver failure syndrome and effects on prognosis. Hepatology. 2015;62(1):243–52.

    Article  PubMed  Google Scholar 

  9. Moreau R, et al. Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis. Gastroenterology. 2013;144(7):1426–37. 1437.e1–9

    Article  PubMed  Google Scholar 

  10. Jalan R, et al. Acute-on-chronic liver failure: a distinct clinical condition. Semin Liver Dis. 2016;36(2):107–8.

    Article  PubMed  Google Scholar 

  11. Ariza X, et al. Neutrophil gelatinase-associated lipocalin is a biomarker of acute-on-chronic liver failure and prognosis in cirrhosis. J Hepatol. 2016;65(1):57–65.

    Article  CAS  PubMed  Google Scholar 

  12. Mookerjee RP, et al. Treatment with non-selective beta blockers is associated with reduced severity of systemic inflammation and improved survival of patients with acute-on-chronic liver failure. J Hepatol. 2016;64(3):574–82.

    Article  CAS  PubMed  Google Scholar 

  13. Cichoz-Lach H, et al. Pathophysiology of portal hypertension. J Physiol Pharmacol. 2008;59(Suppl 2):231–8.

    PubMed  Google Scholar 

  14. Reeves HL, Friedman SL. Activation of hepatic stellate cells—a key issue in liver fibrosis. Front Biosci. 2002;7:d808–26.

    Article  CAS  PubMed  Google Scholar 

  15. Iwakiri Y. Endothelial dysfunction in the regulation of cirrhosis and portal hypertension. Liver Int. 2012;32(2):199–213.

    Article  CAS  PubMed  Google Scholar 

  16. Nagula S, et al. Histological-hemodynamic correlation in cirrhosis—a histological classification of the severity of cirrhosis. J Hepatol. 2006;44(1):111–7.

    Article  PubMed  Google Scholar 

  17. Moller S, et al. Endothelin-1 and endothelin-3 in cirrhosis: relations to systemic and splanchnic haemodynamics. J Hepatol. 1995;23(2):135–44.

    Article  CAS  PubMed  Google Scholar 

  18. Gupta TK, et al. Endothelial dysfunction and decreased production of nitric oxide in the intrahepatic microcirculation of cirrhotic rats. Hepatology. 1998;28(4):926–31.

    Article  CAS  PubMed  Google Scholar 

  19. Iwakiri Y, Groszmann RJ. Vascular endothelial dysfunction in cirrhosis. J Hepatol. 2007;46(5):927–34.

    Article  CAS  PubMed  Google Scholar 

  20. Battista S, et al. Hyperdynamic circulation in patients with cirrhosis: direct measurement of nitric oxide levels in hepatic and portal veins. J Hepatol. 1997;26(1):75–80.

    Article  CAS  PubMed  Google Scholar 

  21. Bolognesi M, et al. Splanchnic vasodilation and hyperdynamic circulatory syndrome in cirrhosis. World J Gastroenterol. 2014;20(10):2555–63.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dimmeler S, et al. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature. 1999;399(6736):601–5.

    Article  CAS  PubMed  Google Scholar 

  23. Perri RE, et al. Defects in cGMP-PKG pathway contribute to impaired NO-dependent responses in hepatic stellate cells upon activation. Am J Physiol Gastrointest Liver Physiol. 2006;290(3):G535–42.

    Article  CAS  PubMed  Google Scholar 

  24. Wiest R, Groszmann RJ. Nitric oxide and portal hypertension: its role in the regulation of intrahepatic and splanchnic vascular resistance. Semin Liver Dis. 1999;19(4):411–26.

    Article  CAS  PubMed  Google Scholar 

  25. Cahill PA, et al. Increased endothelial nitric oxide synthase activity in the hyperemic vessels of portal hypertensive rats. J Hepatol. 1996;25(3):370–8.

    Article  CAS  PubMed  Google Scholar 

  26. Blendis L, Wong F. The hyperdynamic circulation in cirrhosis: an overview. Pharmacol Ther. 2001;89(3):221–31.

    Article  CAS  PubMed  Google Scholar 

  27. Moreau R. VEGF-induced angiogenesis drives collateral circulation in portal hypertension. J Hepatol. 2005;43(1):6–8.

    Article  CAS  PubMed  Google Scholar 

  28. Fernandez M, et al. Inhibition of VEGF receptor-2 decreases the development of hyperdynamic splanchnic circulation and portal-systemic collateral vessels in portal hypertensive rats. J Hepatol. 2005;43(1):98–103.

    Article  CAS  PubMed  Google Scholar 

  29. Sharma M, Rameshbabu CS. Collateral pathways in portal hypertension. J Clin Exp Hepatol. 2012;2(4):338–52.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Paquet KJ. Causes and pathomechanisms of oesophageal varices development. Med Sci Monit. 2000;6(5):915–28.

    CAS  PubMed  Google Scholar 

  31. Moitinho E, et al. Prognostic value of early measurements of portal pressure in acute variceal bleeding. Gastroenterology. 1999;117(3):626–31.

    Article  CAS  PubMed  Google Scholar 

  32. Garcia-Tsao G, et al. Portal pressure, presence of gastroesophageal varices and variceal bleeding. Hepatology. 1985;5(3):419–24.

    Article  CAS  PubMed  Google Scholar 

  33. Hou MC, et al. Antibiotic prophylaxis after endoscopic therapy prevents rebleeding in acute variceal hemorrhage: a randomized trial. Hepatology. 2004;39(3):746–53.

    Article  CAS  PubMed  Google Scholar 

  34. Runyon BA, Committee APG. Management of adult patients with ascites due to cirrhosis: an update. Hepatology. 2009;49(6):2087–107.

    Article  PubMed  Google Scholar 

  35. Gines P, et al. Compensated cirrhosis: natural history and prognostic factors. Hepatology. 1987;7(1):122–8.

    Article  CAS  PubMed  Google Scholar 

  36. Sola E, Gines P. Renal and circulatory dysfunction in cirrhosis: current management and future perspectives. J Hepatol. 2010;53(6):1135–45.

    Article  PubMed  Google Scholar 

  37. Schrier RW, et al. Peripheral arterial vasodilation hypothesis: a proposal for the initiation of renal sodium and water retention in cirrhosis. Hepatology. 1988;8(5):1151–7.

    Article  CAS  PubMed  Google Scholar 

  38. Moore CM, Van Thiel DH. Cirrhotic ascites review: pathophysiology, diagnosis and management. World J Hepatol. 2013;5(5):251–63.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Such J, Runyon BA. Spontaneous bacterial peritonitis. Clin Infect Dis. 1998;27(4):669–74. quiz 675–6

    Article  CAS  PubMed  Google Scholar 

  40. Almeida J, et al. Gut flora and bacterial translocation in chronic liver disease. World J Gastroenterol. 2006;12(10):1493–502.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Garcia-Tsao G, Wiest R. Gut microflora in the pathogenesis of the complications of cirrhosis. Best Pract Res Clin Gastroenterol. 2004;18(2):353–72.

    Article  PubMed  Google Scholar 

  42. Pascual S, et al. Intestinal permeability is increased in patients with advanced cirrhosis. Hepato-Gastroenterology. 2003;50(53):1482–6.

    PubMed  Google Scholar 

  43. Guarner C, Runyon BA. Spontaneous bacterial peritonitis: pathogenesis, diagnosis, and management. Gastroenterologist. 1995;3(4):311–28.

    CAS  PubMed  Google Scholar 

  44. Bernardi M. Spontaneous bacterial peritonitis: from pathophysiology to prevention. Intern Emerg Med. 2010;5(Suppl 1):S37–44.

    Article  PubMed  Google Scholar 

  45. Bolognesi M, et al. Clinical significance of the evaluation of hepatic reticuloendothelial removal capacity in patients with cirrhosis. Hepatology. 1994;19(3):628–34.

    Article  CAS  PubMed  Google Scholar 

  46. Twilla JD, et al. Severity of systemic inflammatory response syndrome affects outcomes in decompensated cirrhotics with spontaneous bacterial peritonitis. Am J Gastroenterol. 2016;111(7):1043–5.

    Article  PubMed  Google Scholar 

  47. Gines P, et al. Hepatorenal syndrome. Lancet. 2003;362(9398):1819–27.

    Article  CAS  PubMed  Google Scholar 

Further Reading

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. P. Norvell M.D. or Anjana A. Pillai M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Norvell, J.P., Pillai, A.A., Flynn, M.M. (2018). Gastrointestinal and Hepatic Physiology in Liver Disease. In: Nanchal, R., Subramanian, R. (eds) Hepatic Critical Care . Springer, Cham. https://doi.org/10.1007/978-3-319-66432-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66432-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66431-6

  • Online ISBN: 978-3-319-66432-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics