Spanish Corpus for Sentiment Analysis Towards Brands

  • María Navas-LoroEmail author
  • Víctor Rodríguez-Doncel
  • Idafen Santana-Perez
  • Alberto Sánchez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10458)


Posts published in the social media are a good source of feedback to assess the impact of advertising campaigns. Whereas most of the published corpora of messages in the Sentiment Analysis domain tag posts with polarity labels, this paper presents a corpus in Spanish language where tagging has been made using 8 predefined emotions: love-hate, happiness-sadness, trust-fear, satisfaction-dissatisfaction. In every post, extracted from Twitter, sentiments have been annotated towards each specific brand under study. The corpus is published as a collection of RDF resources with links to external entities. Also a vocabulary describing this emotion classification along with other relevant aspects of customer’s opinion is provided.


Corpus Sentiment analysis NLP Opinion mining 



This work has been partially supported by LPS-BIGGER (IDI-20141259, Ministerio de Economía y Competitividad), a research assistant grant by the Consejería de Educación, Juventud y Deporte de la Comunidad de Madrid partially founded by the European Social Fund (PEJ16/TIC/AI-1984) and a Juan de la Cierva contract.


  1. 1.
    Baker, C.F., Fillmore, C.J., Lowe, J.B.: The Berkeley FrameNet project. In: Proceedings of the COLING-ACL, vol. 1, pp. 86–90. ACL (1998)Google Scholar
  2. 2.
    Baldoni, M., Baroglio, C., et al.: ArsEmotica: emotions in the social semantic web. In: Proceedings of the 7th International Conference on Semantic Systems, pp. 171–174 (2011)Google Scholar
  3. 3.
    Borden, N.H.: The concept of the marketing mix. J. Advertising Res. 4(2), 2–7 (1964)Google Scholar
  4. 4.
    Breslin, J.G., Decker, S., et al.: Sioc: an approach to connect web-based communities. Int. J. Web Based Communities 2(2), 133–142 (2006)CrossRefGoogle Scholar
  5. 5.
    Ciao, website with opinions on several topics.
  6. 6.
    Corpus COAR, with opinions about restaurants.
  7. 7.
    Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20(1), 37–46 (1960)CrossRefGoogle Scholar
  8. 8.
  9. 9.
    Cotfas, L.-A., Delcea, C., Roxin, I., Paun, R.: Twitter ontology-driven sentiment analysis. In: Barbucha, D., Nguyen, N.T., Batubara, J. (eds.) New Trends in Intelligent Information and Database Systems. SCI, vol. 598, pp. 131–139. Springer, Cham (2015). doi: 10.1007/978-3-319-16211-9_14 Google Scholar
  10. 10.
    Cruz, F.L., Troyano, J.A., et al.: Clasificación de documentos basada en la opinión: experimentos con un corpus de crıticas de cine en espanol. Procesamiento Lenguaje Nat. 41, 73–80 (2008)Google Scholar
  11. 11.
    Cumbreras, M.Á.G., Cámara, E.M., et al.: TASS 2015 - The evolution of the Spanish opinion mining systems. Procesamiento Lenguaje Nat. 56, 33–40 (2016)Google Scholar
  12. 12.
    DBPedia website.
  13. 13.
    Dong, Z., Dong, Q., Hao, C.: Hownet and its computation of meaning. In: Proceedings of COLING 2010: Demonstrations, pp. 53–56. ACL (2010)Google Scholar
  14. 14.
    Ekman, P., Friesen, W.V., Ellsworth, P.: Emotion in the Human Face: Guidelines for Research and an Integration of Findings. Pergamon Press (1972)Google Scholar
  15. 15.
  16. 16.
    Fleiss, J.L., Cohen, J.: The equivalence of weighted kappa and the intraclass correlation coefficient as measures of reliability. Educ. Psychol. Meas. 33(3), 613–619 (1973)CrossRefGoogle Scholar
  17. 17.
    Francisco, V., Gervás, P., Peinado, F.: Ontological reasoning to configure emotional voice synthesis. In: Marchiori, M., Pan, J.Z., Marie, C.S. (eds.) RR 2007. LNCS, vol. 4524, pp. 88–102. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-72982-2_7 CrossRefGoogle Scholar
  18. 18.
    Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., Schneider, L.: Sweetening ontologies with DOLCE. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS, vol. 2473, pp. 166–181. Springer, Heidelberg (2002). doi: 10.1007/3-540-45810-7_18 CrossRefGoogle Scholar
  19. 19.
    Gil, R., Virgili-Gomá, J., et al.: Emotions ontology for collaborative modelling and learning of emotional responses. Comput. Hum. Behav. 51, 610–617 (2015)CrossRefGoogle Scholar
  20. 20.
    Grassi, M.: Developing HEO human emotions ontology. In: Fierrez, J., Ortega-Garcia, J., Esposito, A., Drygajlo, A., Faundez-Zanuy, M. (eds.) BioID 2009. LNCS, vol. 5707, pp. 244–251. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-04391-8_32 CrossRefGoogle Scholar
  21. 21.
    Hastings, J., Ceusters, W., et al.: The emotion ontology: enabling interdisciplinary research in the affective sciences. In: International and Interdisciplinary Conference on Modeling and Using Context, pp. 119–123 (2011)Google Scholar
  22. 22.
    Hastings, J., Ceusters, W., et al.: Annotating affective neuroscience data with the emotion ontology. In: Proceedings of the Workshop Towards an Ontology of Mental Functioning at ICBO, pp. 1–5 (2012)Google Scholar
  23. 23.
    Havas Media website.
  24. 24.
    Hepp, M.: GoodRelations: an ontology for describing products and services offers on the web. In: Gangemi, A., Euzenat, J. (eds.) EKAW 2008. LNCS, vol. 5268, pp. 329–346. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-87696-0_29 CrossRefGoogle Scholar
  25. 25.
    LPS BIGGER project website.
  26. 26.
    Martínez-Cámara, E., Martín-Valdivia, M.T., et al.: Polarity classification for Spanish tweets using the COST corpus. J. Inf. Sci. 41(3), 263–272 (2015)CrossRefGoogle Scholar
  27. 27.
    Masquemedicos, with opinions in the medical domain.
  28. 28.
    Mohammad, S.M., Kiritchenko, S.: Using hashtags to capture fine emotion categories from tweets. Comput. Intell. 31(2), 301–326 (2015)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Molina-González, M.D., Martínez-Cámara, E., et al.: Cross-domain sentiment analysis using Spanish opinionated words. In: Métais, E., Roche, M., Teisseire, M. (eds.) NLDB 2014. LNCS, pp. 214–219. Springer, Cham (2014). doi: 10.1007/978-3-319-07983-7_28 Google Scholar
  30. 30.
    Montejo-Ráez, A., Díaz-Galiano, M.C., et al.: Crowd explicit sentiment analysis. Knowl. Based Syst. 69(1), 134–139 (2014)CrossRefGoogle Scholar
  31. 31.
    MuchoCine, Spanish website with reviews about films.
  32. 32.
    Nakamura, A.: Kanjo Hyogen Jiten. Tokyodo Publishing (1993)Google Scholar
  33. 33.
    Nielsen: The social media report.
  34. 34.
    Obrenovic, Z., Garay, N., López, J.M., Fajardo, I., Cearreta, I.: An ontology for description of emotional cues. In: Tao, J., Tan, T., Picard, R.W. (eds.) ACII 2005. LNCS, vol. 3784, pp. 505–512. Springer, Heidelberg (2005). doi: 10.1007/11573548_65 CrossRefGoogle Scholar
  35. 35.
    Plaza-Del-Arco, F.M., Martín-Valdivia, M.T., et al.: COPOS: Corpus of patient opinions in Spanish. Application of sentiment analysis techniques. Procesamiento Lenguaje Nat. 57, 83–90 (2016)Google Scholar
  36. 36.
    Plutchik, R.: The nature of emotions: Human emotions have deep evolutionary roots (2001)Google Scholar
  37. 37.
    Ptaszynski, M., Rzepka, R., et al.: A robust ontology of emotion objects. In: Proceedings of the 18th Annual Meeting of the Association for Natural Language Processing, pp. 719–722 (2012)Google Scholar
  38. 38.
    Rangel, F., Rosso, P., Reyes, A.: Emotions and irony per gender in facebook. In: Proceedings of Workshop ES3LOD, LREC-2014, pp. 1–6 (2014)Google Scholar
  39. 39.
    Richins, M.L.: Measuring emotions in the consumption experience. J. Consum. Res. 24(2), 127–146 (1997)CrossRefGoogle Scholar
  40. 40.
    Roberts, K., Roach, M., Johnson, J.: EmpaTweet: annotating and detecting emotions on twitter. In: Proceedings of LREC 2012, pp. 3806–3813 (2012)Google Scholar
  41. 41.
    SAB corpus website.
  42. 42.
    Sam, K.M., Lei, P., Chatwin, C.: Ontology development for e-marketing mix model mapping with internet consumers’ decision-making styles. In: Sobh, T. (ed.) Innovations and Advanced Techniques in Computer and Information Sciences and Engineering, pp. 279–282. Springer, Dordrecht (2007). doi: 10.1007/978-1-4020-6268-1_50 CrossRefGoogle Scholar
  43. 43.
    Sánchez-Rada, J.F., Iglesias, C.A.: Onyx: a linked data approach to emotion representation. Inf. Process. Manag. 52(1), 99–114 (2016)CrossRefGoogle Scholar
  44. 44.
    Sánchez Rada, J.F., Torres, M., et al.: A linked data approach to sentiment and emotion analysis of twitter in the financial domain. In: 2nd International Workshop on Finance and Economics on the Semantic Web (2014)Google Scholar
  45. 45.
    Shaver, P., Schwartz, J., et al.: Emotion knowledge: further exploration of a prototype approach. J. Pers. Soc. Psychol. 52(6), 1061–1086 (1987)CrossRefGoogle Scholar
  46. 46.
    Spanish Corpus of reviews about films.
  47. 47.
    Strapparava, C., Valitutti, A.: WordNet-Affect: an affective extension of WordNet. In: Proceedings of LREC, pp. 1083–1086 (2004)Google Scholar
  48. 48.
  49. 49.
    Thomson Reuter’s PermID website.
  50. 50.
    Togias, K., Kameas, A.: An ontology-based representation of the twitter REST API. In: Proceedings of the IEEE 24th ICTAI, vol. 1, pp. 998–1003 (2012)Google Scholar
  51. 51.
    Tripadvisor website, with opinions on tourism.
  52. 52.
    Twitter preprocessed datasets available at the TU Eindhoven.
  53. 53.
  54. 54.
    Vocabulary of the SAB corpus.
  55. 55.
    Westerski, A., Iglesias, C.A., Rico, F.T.: Linked opinions: describing sentiments on the structured web of data. In: Proceedings of the 4th International Workshop Social Data on the Web, vol. 830 (2011)Google Scholar
  56. 56.
    Yan, J., Bracewell, D.B., et al.: The creation of a Chinese emotion ontology based on HowNet. Eng. Lett. 16(1), 166–171 (2008)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Ontology Engineering GroupUniversidad Politécnica de MadridMadridSpain
  2. 2.Havas MediaMadridSpain

Personalised recommendations