Skip to main content

Epoxidized Vegetable Oils for Thermosetting Resins and Their Potential Applications

  • Chapter
  • First Online:
Functional Biopolymers

Abstract

In the recent decades, bio-based polymers have gained increasing interest, especially for composite materials. These polymers and their respective monomers are derived from renewable resources, being thermoplastics or thermosetting resins which are biodegradable or non-biodegradable. Thermosettings are strong, rigid polymer materials and cannot be easily processed by melting after their hardening. At present, thermosetting resins are obtained using highly toxic and volatile petrochemicals, which require human and environmental safety monitoring. Considering the wide range of diverse renewable monomers available, vegetable oils (VOs) are especially well-suited when it comes to the synthesis of thermosetting resins due to their carbon-carbon double bonds, highly desirable for this type of application as these unsaturated bonds can be chemically modified in order to increase reactivity toward further polymerization. Thus, epoxidation, which consists of introducing a single oxygen atom to each non-saturated bond to yield in an epoxidic cycle, is a simple, effective method to modify these VOs. The resulted thermosetting resins exhibit improved toughness and environmental-friendly behavior. VOs, especially soybean oil which is abundant and cheap, are typically mixtures of unsaturated fatty acids with numerous bonds that can be easily converted into the more reactive oxirane rings through the reaction with peracids or peroxides. The present chapter focuses on composites obtained from epoxidized vegetable oils (EVOs) and epoxy resins and their properties in correlation with their envisaged applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abad MJ, Barral L, Fasce DP, Williams RJ (2003) Epoxy networks containing large mass fractions of a monofunctional polyhedral oligomeric silsesquioxane (POSS). Macromolecules 36:3128–3135

    Article  CAS  Google Scholar 

  • Abdelwahab MA, Misra M, Mohanty AK (2015) Epoxidized pine oil-siloxane: crosslinking kinetic study and thermomechanical properties. J Appl Polym Sci 132:42451–42462

    Article  CAS  Google Scholar 

  • Aboobucker Sithique M, Alagar M (2010) Preparation and properties of bio-based nanocomposites from epoxidized soy bean oil and layered silicate. MPJ 5:151–161

    Google Scholar 

  • Adekunle K, Akesson D, Skrifvars M (2010) Biobased composites prepared by compression molding with a novel thermoset resin from soybean oil and a natural-fiber reinforcement. J Appl Polym Sci 116:1759–1765

    CAS  Google Scholar 

  • Adekunle KF (2015) A review of vegetable oil-based polymers: synthesis and applications. OJPChem 5:34–40. doi:10.4236/ojpchem.2015.53004

    Article  CAS  Google Scholar 

  • Ahmad S, Ashraf SM, Alam M (2006a) Studies on melamine modified polyesteramide as anticorrosive coatings from linseed oil: a sustainable resource. J Macromol Sci Part A Pure Appl Chem 43:773–783

    Article  CAS  Google Scholar 

  • Ahmad S, Ashraf SM, Hasnat A, Kumar GS, Sharmin E (2006b) Studies on epoxy-butylated melamine formaldehyde-based anticorrosive coatings from a sustainable resource. Prog Org Coat 56:207–213

    Article  CAS  Google Scholar 

  • Alam M, Akram D, Sharmin E, Zafar F, Ahmad S (2014) Vegetable oil based eco-friendly coating materials: a review article. Arab J Chem 7:469–479

    Article  CAS  Google Scholar 

  • Altuna FI, Esposito LH, Ruseckaite RA, Stefani PM (2011) Thermal and mechanical properties of anhydride-cured epoxy resins with different contents of biobased epoxidized soybean oil. J Appl Polym Sci 120:789–798

    Article  CAS  Google Scholar 

  • Altuna FI, Ruseckaite RA, Stefani PM (2015) Biobased thermosetting epoxy foams: mechanical and thermal characterization. ACS Sustain Chem Eng 3:1406–1411

    Article  CAS  Google Scholar 

  • Andrejkovičová S, Velosa A, Gameiro A, Ferraz E, Rocha F (2013) Palygorskite as an admixture to air lime–metakaolin mortars for restoration purposes. Appl Clay Sci 83–84:368–374

    Article  CAS  Google Scholar 

  • Auvergne R, Caillol S, David G, Boutevin B, Pascault J-P (2014) Biobased thermosetting epoxy: present and future. Chem Rev 114:1082–1115

    Article  CAS  Google Scholar 

  • Balo F (2011) Castor oil-based building materials reinforced with fly ash, clay, expanded perlite and pumice powder. CERAM-SILIKÁTY 55:280–293

    CAS  Google Scholar 

  • Becchi DM, de Luca MA, Martinelli M, Mitidieri S (2011) Organic–inorganic coatings based on epoxidised castor oil/APTES/TEOS. J Am Oil Chem Soc 88:101–109

    Article  CAS  Google Scholar 

  • Biermann U, Bornscheuer U, Meier MAR, Metzger JO, Schafer HJ (2011) Oils and fats as renewable raw materials in chemistry. Angew Chem Int Ed 50:3854–3871

    Article  CAS  Google Scholar 

  • Campanella A, Zhan M, Watt P, Grous AT, Shen C, Wool RP (2015) Triglyceride-based thermosetting resins with different reactive diluents and fiber reinforced composite applications. Compos A 72:192–199

    Article  CAS  Google Scholar 

  • Carfagna C, Amendola E, Giamberini M (1997) Liquid crystalline epoxy based thermosetting polymers. Prog Polym Sci 22:1607–1647

    Article  CAS  Google Scholar 

  • Chandrashekhara K, Sundararaman S, Flanigan V, Kapila S (2005) Affordable composites using renewable materials. Mater Sci Eng A 412:2–6

    Article  CAS  Google Scholar 

  • Chen X, Chen Y (1997) Studies on active center concentration in photopolymerization of cyclohexene oxide initiated with iron-arene complex. J Appl Polym Sci 66:2551–2554

    Article  CAS  Google Scholar 

  • Chen Z, Chisholm BJ, Webster DC, Zhang Y, Patel S (2009) New aromatic amine based on cardanol giving new bio-based epoxy networks. Prog Org Coat 65:246–250

    Article  CAS  Google Scholar 

  • Crivello JV, Narayan R (1992) Epoxidized triglycerides as renewable monomers in photoinitiated cationic polymerization. Chem Mater 4:692–699

    Article  CAS  Google Scholar 

  • Czub P (2006) Application of modified natural oils as reactive diluents for epoxy resins. Macromol Symp 242:60–64

    Article  CAS  Google Scholar 

  • Czub P (2009) Synthesis and modification of epoxy resins using recycled poly(ethylene terephthalate). Polym Adv Technol 20:183–193

    Article  CAS  Google Scholar 

  • Das G, Karak N (2009) Epoxidized Mesua ferrea L. seed oil-based reactive diluent for BPA epoxy resin and their green nanocomposites. Prog Org Coat 66:59–64

    Article  CAS  Google Scholar 

  • de Luca MA, Martinelli M, Jacobi MM, Becker PL, Ferrão MF (2006) Ceramer coatings from castor oil or epoxidized castor oil and tetraethoxysilane. JAOCS 83:147–151

    Google Scholar 

  • Demirboğa R, Orung I, Gul R (2001) Effects of expanded perlite aggregate and mineral admixtures on the compressive strength of low-density concretes. Cem Concr Res 31:1627–1632

    Article  Google Scholar 

  • Ding C, Matharu AS (2014) Recent developments on biobased curing agents: a review of their preparation and use. ACS Sustain Chem Eng 2:2217–2236

    Article  CAS  Google Scholar 

  • Ding C, Shuttleworth PS, Makin S, Clark JH, Matharu AS (2015) New insights into the curing of epoxidized linseed oil with dicarboxylic acids. Green Chem 17:4000–4008

    Article  CAS  Google Scholar 

  • Earls JD, White JE, Dettloff ML, Null MJ (2004) Development and evaluation of terminally epoxidized triglycerides for coatings applications. J Coat Technol Res 1:243–245

    Article  CAS  Google Scholar 

  • Echeverri DA, Rios LA, Rivas BL (2015) Synthesis and copolymerization of thermosetting resins obtained from vegetable oils and biodiesel-derived crude glycerol. Eur Polym J 67:428–438

    Article  CAS  Google Scholar 

  • Feldman D (1996) Composites, thermosetting polymers. In: Salamone JC (ed) Polymeric materials encyclopedia. CRC Press, Boca Raton, pp 277–278

    Google Scholar 

  • Galià M, Montero de Espinosa L, Ronda JC, Lligadas G, Cádiz V (2010) Vegetable oil-based thermosetting polymers. Eur J Lipid Sci Technol 112:87–96

    Article  CAS  Google Scholar 

  • Gan Y, Jiang X (2015) Photo-cured materials from vegetable oils, Chapter 1. In: Liu Z, Kraus G (eds) Green materials from plant oils. RSC Green Chemistry (Book 29), The Royal Society of Chemistry, pp 1–27

    Google Scholar 

  • Gerbase AE, Petzhold CL, Costa APO (2002) Dynamic mechanical and thermal behavior of epoxy resins based on soybean oil. JAOCS 79:797–802

    CAS  Google Scholar 

  • Guner FS, Yagci Y, Erciyes AT (2006) Polymers from triglyceride oils. Prog Polym Sci 31:633–670

    Article  CAS  Google Scholar 

  • Hayes BS, Seferis JC (2001) Modification of thermosetting resins and composites through preformed polymer particles: a review. Polym Comp 22:451–467

    Article  CAS  Google Scholar 

  • Henna PH, Kessler MR, Larock RC (2008) Fabrication and properties of vegetable-oil-based glass fiber composites by ring-opening metathesis polymerization. Macromol Mater Eng 293:979–990

    Article  CAS  Google Scholar 

  • Hong CK, Wool RP (2005) Development of a bio-based composite material from soybean oil and keratin fibers. J Appl Polym Sci 95:1524–1538

    Article  CAS  Google Scholar 

  • Horiuchi S, Kawaguchi M, Yasuhara K (2000) Effective use of fly ash slurry as fill material. J Hazard Mater 76:301–337

    Article  CAS  Google Scholar 

  • Hosoda N, Tsujimoto T, Uyama H (2014) Plant oil-based green composite using porous poly(3-hydroxybutyrate). Polym J 46:301–306

    Google Scholar 

  • Huang K, Zhang Y, Li M, Lian J, Yang X, Xia J (2012) Preparation of a light color cardanol-based curing agent and epoxy resin composite: cure-induced phase separation and its effect on properties. Prog Org Coat 74:240–247

    Article  CAS  Google Scholar 

  • IUPAC Compendium of Chemical Terminology (1997) The gold book, 2nd edn. In: McNaught AD, Wilkinson A (eds). Blackwell Scientific Publications, Oxford, ISBN 0-9678550-9-8. doi:10.1351/goldbook.CT07539

  • Kannan RY, Salacinski HJ, Butler PE, Seifalian AM (2005) Polyhedral oligomeric silsesquioxane nanocomposites: the next generation material for biomedical applications. Acc Chem Res 38:879–884

    Article  CAS  Google Scholar 

  • Jusoh ER, Ismail MHS, Abdullah LC, Yunus R, Rahman WAWA (2012) Crude palm oil as a bioadditive in polypropylene blown films. BioResources 7:859–867

    CAS  Google Scholar 

  • Khot SN, Lascala JJ, Can E, Morye SS, Williams GI, Palmese GR, Kusefoglu SH, Wool RP (2001) Development and applications of triglyceride-based polymers and composites. J Appl Polym Sci 82:703–723

    Article  CAS  Google Scholar 

  • Krawczak P, Pabiot J (1995) Fracture mechanics applied to glass fibre/epoxy matrix interface characterization. J Compos Mat 29:2230–2253

    Article  CAS  Google Scholar 

  • Liu K, Madbouly SA, Schrader JA, Kessler MR, Grewell D, Graves WR (2015) Biorenewable polymer composites from tall oil-based polyamide and lignin-cellulose fiber. J Appl Polym Sci 132:42592

    Google Scholar 

  • Liu ZS, Erhan SZ, Xu J, Calvert PD (2002) Development of soybean oil-based composites by solid freeform fabrication method: epoxidized soybean oil with bis or polyalkyleneamine curing agents systems. J Appl Polym Sci 85:2100–2107

    Article  CAS  Google Scholar 

  • Liu ZS, Erhan SZ, Calvert PD (2007) Solid freeform fabrication of epoxidized soybean oil/epoxy composite with bis or polyalkyleneamine curing agents. Compos A 38:87–93

    Article  CAS  Google Scholar 

  • Lligadas G, Ronda JC, Galià M, Cádiz V (2006a) Bionanocomposites from renewable resources: epoxidized linseed oil-polyhedral oligomeric silsesquioxanes hybrid materials. Biomacromol 7:3521–3526

    Article  CAS  Google Scholar 

  • Lligadas G, Ronda JC, Galià M, Cadiz V (2006b) Synthesis and properties of thermosetting polymers from a phosphorous-containing fatty acid derivative. J Polym Sci Part A Polym Chem 44:5630–5644

    Article  CAS  Google Scholar 

  • Lligadas G, Ronda JC, Galià M, Cadiz V (2006c) Development of novel phosphorous-containing epoxy resins from renewable resources. J Polym Sci Part A Polym Chem 44:6717–6727

    Article  CAS  Google Scholar 

  • Lligadas G, Ronda JC, Galià M, Cádiz V (2006d) Bionanocomposites from renewable resources: epoxidized linseed oil polyhedral oligomeric silsesquioxanes (POSS) hybrid materials. Biomacromolecules 7:3521–3526

    Article  CAS  Google Scholar 

  • Lligadas G, Ronda JC, Galia M, Cadiz V (2013) Renewable polymeric materials from vegetable oils: a perspective. Mater Today 16:337–343

    Article  CAS  Google Scholar 

  • Lu HB, Shen HB, Song ZL, Shing KS, Tao W, Nutt S (2005) Rod-like silicate-epoxy nanocomposites. Macromol Rapid Commun 26:1445–1450

    Article  CAS  Google Scholar 

  • Luo C, Grigsby WJ, Edmonds NR, Al-Hakkak J (2013) Vegetable oil thermosets reinforced by tannin–lipid formulations. Acta Biomater 9:5226–5233

    Article  CAS  Google Scholar 

  • Matějka L, Strachota A, Pleštil J, Whelan P, Steinhart M, Šlouf M (2004) Epoxy networks reinforced with polyhedral oligomeric silsesquioxanes (POSS). Structure and morphology. Macromolecules 37:9449–9456

    Article  CAS  Google Scholar 

  • Maxim LD, Niebo R, McConnell EE (2014) Perlite toxicology and epidemiology—a review. Inhal Toxicol 26:259–270

    Article  CAS  Google Scholar 

  • Meier MAR, Metzger JO, Schubert US (2007) Plant oil renewable resources as green alternatives in polymer science. Chem Soc Rev 36:1788–1802

    Article  CAS  Google Scholar 

  • Meiorin C, Aranguren MI, Mosiewicki MA (2015) Polymeric networks based on tung oil: reaction and modification with green oil monomers. Eur Polym J 67:551–560

    Article  CAS  Google Scholar 

  • Miao S, Wang P, Su Z, Zhang S (2014) Vegetable oil-based polymers as future polymeric biomaterials. Acta Biomater 10:1692–1704

    Article  CAS  Google Scholar 

  • Miyagawa H, Misra M, Drzal LT, Mohanty AK (2005a) Biobased epoxy/layered silicate nanocomposites: thermophysical properties and fracture behavior evaluation. J Polym Environ 13:87–96

    Article  CAS  Google Scholar 

  • Miyagawa H, Misra M, Drzal LT, Mohanty AK (2005b) Novel biobased nanocomposites from functionalized vegetable oil and organically-modified layered silicate clay. Polymer 46:445–453

    Article  CAS  Google Scholar 

  • Miyagawa H, Misra M, Drzal LT, Mohanty AK (2005c) Fracture toughness and impact strength of anhydride-cured bio-based epoxy. Polym Eng Sci 45:487–495

    Article  CAS  Google Scholar 

  • Miyagawa H, Jureka RJ, Mohanty AK, Misra M, Drzal LT (2006) Biobased epoxy/clay nanocomposites as a new matrix for CFRP. Compos A 37:54–62

    Article  CAS  Google Scholar 

  • Mo X, Fournier B (2007) Investigation of structural properties associated with alkali–silica reaction by means of macro and micro structural analysis. Mater Charact 58(2):79–189

    Article  CAS  Google Scholar 

  • Mulazim Y, Cakmakc E, Kahraman MV (2011) Preparation of photo curable highly hydrophobic coatings using a modified castor oil derivative as a sol–gel component. Prog Org Coat 72:394–401

    Article  CAS  Google Scholar 

  • Mustaţă F, Tudorachi N, Rosu D (2011) Curing and thermal behavior of resin matrix for composites based on epoxidized soybean oil/diglycidyl ether of bisphenol A. Compos B 42:1803–1812

    Article  CAS  Google Scholar 

  • Mustaţă F, Tudorachi N, Bicu I (2013) Biobased epoxy matrix from diglycidyl ether of bisphenol A and epoxidized corn oil, cross-linked with Diels–Alder adduct of levopimaric acid with acrylic acid. Ind Eng Chem Res 52:17099–17110

    Article  CAS  Google Scholar 

  • O’Donnell A, Dweib MA, Wool RP (2004) Natural fiber composites with plant oil-based resin. Compos Sci Technol 64:1135–1145

    Article  CAS  Google Scholar 

  • Ortiz RA, López DP, Cisneros MLG, Valverde JCR, Crivello JV (2005) A kinetic study of the acceleration effect of substituted benzyl alcohols on the cationic photopolymerization rate of epoxidized natural oils. Polymer 46:1535–1541

    Article  CAS  Google Scholar 

  • Pappu A, Saxena M, Thakur VK, Sharma A, Haque R (2016) Facile extraction, processing and characterization of biorenewable sisal fibers for multifunctional applications. J Macromol Sci Part A 53(7):424–432

    Article  CAS  Google Scholar 

  • Paluvai NR, Mohanty S, Nayak SK (2014) Synthesis and modifications of epoxy resins and their composites: a review. Polym Plast Technol Eng 53:1723–1758

    Article  CAS  Google Scholar 

  • Paluvai NR, Mohanty S, Nayak SK (2015a) Epoxidized castor oil toughened diglycidyl ether of bisphenol A epoxy nanocomposites: structure and property relationships. Polym Adv Technol 26:1575–1586

    Article  CAS  Google Scholar 

  • Paluvai NR, Mohanty S, Nayak SK (2015b) Fabrication and evaluation of acrylated epoxidized castor oil-toughened diglycidyl ether of bisphenol A nanocomposites. Can J Chem Eng 9999:1–10

    Google Scholar 

  • Pan X, Webster DC (2011) Impact of structure and functionality of core polyol in highly functional biobased epoxy resins. Macromol Rapid Commun 32:1324–1330

    Article  CAS  Google Scholar 

  • Pan X, Sengupta P, Webster DC (2011) High bio-based content epoxy-anhydride thermosets from epoxidized sucrose esters of fatty acids. Biomacromolecules 12:2416–2428

    Article  CAS  Google Scholar 

  • Pascault J-P, Williams RJJ (2010) Conclusions and perspectives. In: Pascault J-P, Williams RJJ (eds) Epoxy polymers. Wiley, Hoboken, pp 347–355

    Chapter  Google Scholar 

  • Pascault JP, Williams RJJ (2013) Thermosetting polymers, chapter 28. In: Salvidar-Guerra E, Vivaldo-Lima E (eds) Handbook of polymer, synthesis, characterisation and processing. Wiley, New York, pp 519–534

    Chapter  Google Scholar 

  • Petrovic ZS, Guo A, Javni I, Zhang W (2004) Plastics and composites from soybean oil. In: Wallenberger FT, Weston N (eds) Natural fibers, plastics and composites. Springer, New York, pp 167–192

    Chapter  Google Scholar 

  • Pin JM, Sbirrazzuoli N, Mija A (2015a) From epoxidized linseed oil to bioresin: an overall approach of epoxy/anhydride cross-linking. Chemsuschem 8:1232–1243

    Article  CAS  Google Scholar 

  • Pin J-M, Guigo N, Vincent L, Sbirrazzuoli N, Mija A (2015b) Copolymerization as a strategy to combine epoxidized linseed oil and furfuryl alcohol: the design of a fully bio-based thermoset. Chemsuschem 8:4149–4161

    Article  CAS  Google Scholar 

  • Quirino RL, Garrison TF, Kessler MR (2014) Matrices from vegetable oils, cashew nut shell liquid, and other relevant systems for biocomposite applications. Green Chem 16:1700–1715

    Article  CAS  Google Scholar 

  • Raghavachar R, Sarnecki G, Baghdachi J, Massingill J (2000) Cationic, thermally cured coatings using epoxidized soybean oil. J Coat Technol 72:125–133

    Article  CAS  Google Scholar 

  • Ray D, Ghorui S, Bandyopadhyay NR, Sengupta S, Kar T (2012) New materials from maleated castor oil/epoxy resin blend reinforced with fly ash. Ind Eng Chem Res 51:2603–2608

    Article  CAS  Google Scholar 

  • Raquez J-M, Deléglise M, Lacrampe M-F, Krawczak P (2010) Thermosetting (bio)materials derived from renewable resources: a critical review. Prog Polym Sci 35:487–509

    Article  CAS  Google Scholar 

  • Riaz U, Vashist A, Ahmad SA, Ahmad S, Ashraf SM (2010) Compatibility and biodegradability studies of linseed oil epoxy and PVC blends. Biomass Bioenergy 34:396–401

    Article  CAS  Google Scholar 

  • Riaz U, Ashraf SM, Sharma HO (2011) Mechanical, morphological and biodegradation studies of microwave processed nanostructured blends of some bio-based oil epoxies with poly(vinyl alcohol). Polym Degrad Stab 96:33–42

    Article  CAS  Google Scholar 

  • Rosu D, Mustata F, Tudorachi N, Musteata VE, Rosu L, Varganici C-D (2015) Novel bio–based flexible epoxy resin from diglycidyl ether of bisphenol A cured with castor oil maleate. RSC Adv 5:45679–45687

    Article  CAS  Google Scholar 

  • Roşu D, Bodîrlău R, Teacă C-A, Roşu L, Varganici C-D (2016) Epoxy and succinic anhydride functionalized soybean oil for wood protection against UV light action. J Clean Prod 112:1175–1183

    Article  CAS  Google Scholar 

  • Samuelsson J, Sundell PE, Johansson M (2004) Synthesis and polymerization of a radiation curable hyperbranched resin based on epoxy functional fatty acids. Prog Org Coat 50:193–198

    Article  CAS  Google Scholar 

  • Sharmin E, Akram D, Ghosal A, Rahman O, Zafar F, Ahmad S (2011) Preparation and characterization of nanostructured biohybrid. Prog Org Coat 72:469–472

    Article  CAS  Google Scholar 

  • Shen L, Lin YJ, Du QG, Zhong W (2006) Studies on structure–property relationship of polyamide-6/attapulgite nanocomposites. Compos Sci Technol 66:2242–2248

    Article  CAS  Google Scholar 

  • Shibata M, Teramoto N, Someya Y, Suzuki S (2009) Bio-based nanocomposites composed of photo-cured epoxidized soybean oil and supramolecular hydroxystearic acid nanofillers. J Polym Sci Part B Polym Phys 47:669–673

    Article  CAS  Google Scholar 

  • Shibata M, Nakai K (2010) Preparation and properties of biocomposites composed of bio-based epoxy resin, tannin acid, and microfibrillated cellulose. J Polym Sci Part B Polym Phys 48:425–433

    Article  CAS  Google Scholar 

  • Singha AS, Thakur VK (2008a) Synthesis and characterization of pine needles reinforced RF matrix based biocomposites. J Chem 5(S1):1055–1062

    CAS  Google Scholar 

  • Singha AS, Thakur VK (2008b) Fabrication and study of lignocellulosic hibiscus sabdariffa fiber reinforced polymer composites. BioResources 3(4):1173–1186

    Google Scholar 

  • Singha AS, Thakur VK (2008c) Synthesis and characterization of grewia optiva fiber-reinforced PF-based composites. Int J Polym Mater Polym Biomater 57(12):1059–1074

    Article  CAS  Google Scholar 

  • Singha AS, Thakur VK (2009a) Fabrication and characterization of H. sabdariffa fiber-reinforced green polymer composites. Polym Plast Technol Eng 48(4):482–487

    Article  CAS  Google Scholar 

  • Singha AS, Thakur VK (2009b) Grewia optiva fiber reinforced novel, low cost polymer composites. J Chem 6(1):71–76

    CAS  Google Scholar 

  • Singha AS, Thakur VK (2009c) Study of mechanical properties of urea-formaldehyde thermosets reinforced by pine needle powder. BioResources 4(1):292–308

    CAS  Google Scholar 

  • Singha AS, Thakur VK (2009d) Mechanical, thermal and morphological properties of grewia optiva fiber/polymer matrix composites. Polym Plast Technol Eng 48(2):201–208

    Article  CAS  Google Scholar 

  • Snellings R, Mertens G, Elsen J (2012) Supplementary cementitious materials. Rev Mineral Geochem 74:211–278. doi:10.2138/rmg.2012.74.6

    Article  CAS  Google Scholar 

  • Shrew RN, Brink JA (1977) Chemical process industries, 4th edn. McGraw-Hill Kogakusha, Tokyo

    Google Scholar 

  • Stemmelen M, Pessel F, Lapinte V, Caillol S, Habas JP, Robin JJ (2011) A fully biobased epoxy resin from vegetable oils: from the synthesis of the precursors by thiol-ene reaction to the study of the final material. J Polym Sci A Polym Chem 49:2434–2444

    Article  CAS  Google Scholar 

  • Taghizadeh MT, Nalbandi N, Bahadori A (2008) Stabilizing effect of epoxidized sunflower oil as a secondary stabilizer for Ca/Hg stabilized PVC. Express Polym Lett 2:65–76

    Article  CAS  Google Scholar 

  • Takada Y, Shinbo K, Someya Y, Shibata M (2009) Preparation and properties of bio-based epoxy montomorillonite nanocomposites derived from polyglycerol polyglycidyl ether and ε-polylysine. J Appl Polym Sci 113:479–484

    Article  CAS  Google Scholar 

  • Takahashi T, Hirayama K-I, Teramoto N, Shibata M (2008) Biocomposites composed of epoxidized soybean oil cured with terpene-based acid anhydride and cellulose fibers. J Appl Polym Sci 108:1596–1602

    Article  CAS  Google Scholar 

  • Tehfe MA, Lalevée J, Gigmes D, Fouassier JP (2010) Green chemistry: sunlight induced cationic polymerization of renewable epoxy monomer under air. Macromolecules 43:1364–1370

    Article  CAS  Google Scholar 

  • Teng G, Soucek MD (2000) Epoxidized soybean oil-based ceramer coatings. JAOCS 77:381–387

    CAS  Google Scholar 

  • Thames S, Yu H (1999) Cationic UV-cured coatings of epoxide-containing vegetable oils. Surf Coat Technol 115:208–214

    Article  CAS  Google Scholar 

  • Thakur VK, Singha AS, Thakur MK (2013a) Ecofriendly biocomposites from natural fibers: mechanical and weathering study. Int J Polym Anal Charact 18(1):64–72

    Article  CAS  Google Scholar 

  • Thakur VK, Singha AS, Thakur MK (2013b) Fabrication and physico-chemical properties of high-performance pine needles/green polymer composites. Int J Polym Mater Polym Biomater 62(4):226–230

    Article  CAS  Google Scholar 

  • Thielemans W, Wool RP (2004) Butyrated kraft lignin as compatibilizing agent for natural fiber reinforced thermoset composites. Compos Part A 35:327–338

    Article  CAS  Google Scholar 

  • Thielemans W, McAninch IM, Barron V, Blau WJ, Wool RP (2005) Impure carbon nanotubes as reinforcements for acrylated epoxidized soy oil composites. J Appl Polym Sci 98:1325–1338

    Article  CAS  Google Scholar 

  • Trumbo DL, Otto JT (2008) Epoxidized fatty acid-derived oxazoline in thermoset coatings. J Coat Technol Res 1–8:107–111

    Article  CAS  Google Scholar 

  • Tsujimoto T, Uyama H, Kobayashi S (2003) Green nanocomposites from renewable resources: biodegradable plant oil-silica hybrid coatings. Macromol Rapid Commun 24:711–714

    Article  CAS  Google Scholar 

  • Tsujimoto T, Uyama H, Kobayashi S (2010) Synthesis of high-performance green nanocomposites from renewable natural oils. Polym Degrad Stab 95:1399–1405

    Article  CAS  Google Scholar 

  • Tsujimoto T, Takayama T, Uyama H (2015) Biodegradable shape memory polymeric material from epoxidized soybean oil and polycaprolactone. Polymer 7:2165–2174

    Article  CAS  Google Scholar 

  • Tuman SJ, Soucek MD (1996) Novel inorganic/organic coatings based on linseed oil and sunflower oil with sol–gel precursors. J Coat Technol 68:73–81

    CAS  Google Scholar 

  • Tuman SJ, Chamberlain D, Scholsky KM, Soucek MD (1996) Metal alkoxides as precursors for electronic and ceramic materials. Prog Org Coat 28:251–258

    Article  CAS  Google Scholar 

  • Tunney JJ, Detellier C (1996) Aluminosilicate nanocomposite materials. Poly(ethylene glycol)-kaolinite intercalates. Chem Mater 8:927–935

    Article  CAS  Google Scholar 

  • Uyama H, Kuwabara M, Tsujimoto T, Nakano M, Usuki A, Kobayashi S (2003) Green nanocomposites from renewable resources: plant oil-clay hybrid materials. Chem Mater 15:2492–2494

    Article  Google Scholar 

  • Wan RW, Kumar R, Mek ZS, Hilmi MM (2003) UV radiation curing of epoxidized palm oil–cycloaliphatic diepoxide system induced by cationic photoinitiators for surface coatings. Eur Polym J 39:593–600

    Article  Google Scholar 

  • Warth H, Mühlhaupt R, Hoffmann B, Lawson S (1997) Polyester networks based upon epoxidized and maleinated natural oils. Angew Makromol Chem 249:79–92

    Article  CAS  Google Scholar 

  • Wold CR, Soucek MD (2000) Viscoelastic and thermal properties of linseed oil-based ceramer coatings. Macromol Chem Phys 201:382–392

    Article  CAS  Google Scholar 

  • Wu X, Zhang X, Yang S, Chen H, Wang D (2000) The study of epoxidized rapeseed oil used as a potential biodegradable lubricant. JAOCS 77:561–563

    CAS  Google Scholar 

  • Xia Y, Larock RC (2010) Vegetable oil-based polymeric materials: synthesis, properties, and applications. Green Chem 12:1893–1909

    Article  CAS  Google Scholar 

  • Xue SQ, Reinholdt M, Pinnavaia TJ (2006) Palygorskite as an epoxy polymer reinforcement agent. Polymer 47:3344–3350

    Article  CAS  Google Scholar 

  • Yousefi A, Lafleur PG, Gauvin R (1997) Kinetic studies of thermoset cure reactions: a review. Polym Comp 18:157–168

    Article  CAS  Google Scholar 

  • Zhang J, Hu S, Zhan G, Tang X, Yu Y (2013) Biobased nanocomposites from clay modified blend of epoxidized soybean oil and cyanate ester resin. Prog Org Coat 76:1683–1690

    Article  CAS  Google Scholar 

  • Zhao L, Zhan GZ, Yu YF, Tang XL, Li SJ (2008) Influence of attapulgites on cure-reaction-induced phase separation in epoxy/poly(ether sulfone) blends. J Appl Polym Sci 108:953–959

    Article  CAS  Google Scholar 

  • Zong Z, Soucek MD, Liu Y, Hu JJ (2003) Cationic photopolymerization of epoxynorbornane linseed oils: the effect of diluents. J Polym Sci Part A Polym Chem 41:3440–3456

    Article  CAS  Google Scholar 

  • Zou K, Soucek MD (2005) UV-curable cycloaliphatic epoxide based on modified linseed oil: synthesis, characterization and kinetics. Macromol Chem Phys 206:967–974

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen-Alice Teacă .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Teacă, CA., Roşu, D., Tanasă, F., Zănoagă, M., Mustaţă, F. (2018). Epoxidized Vegetable Oils for Thermosetting Resins and Their Potential Applications. In: Thakur, V., Thakur, M. (eds) Functional Biopolymers. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-66417-0_8

Download citation

Publish with us

Policies and ethics