Health Concerns Associated with Biofuel Production

  • Muhammad Arshad
  • Ijaz Bano
  • Muhammad Younus
  • Ammanullah Khan
  • Abdur Rahman
Chapter

Abstract

Worldwide intensive demand of biofuel as a substitute to fossil fuels has sparked a debate about their advantages especially concerns about human health. Potential health impacts of biofuel are linked to biochemical and chemicals applied in biofuel production processes. Such caustic chemicals are highly hazardous for human health. Other impacts of biofuel come through water pollution; air pollution and use of agrochemicals and pesticides to raise the feedstock. Incomplete burning of sugarcane leaves or residues may results in toxic compounds formation and fine particulates are emitted into atmosphere. The chapter summarizes the basic health effects of biofuel from agriculture cultivation of feedstock to production processes.

Keywords

Climate change Health concerns Biofuel Water pollution 

References

  1. Arshad M, Khan ZM, Shah FA, Rajoka MI. Optimization of process variables for minimization of byproduct formation during fermentation of blackstrap molasses to ethanol at industrial scale. Lett Appl Microbiol. 2008;47:410–4.CrossRefGoogle Scholar
  2. Arshad M. Bioethanol: A sustainable and environment friendly solution for Pakistan. A Scientific J COMSATS–Sci. Vision. 2010;16–7.Google Scholar
  3. Arshad M, Zia MA, Asghar M, Bhatti H. Improving bio-ethanol yield: Using virginiamycin and sodium flouride at a Pakistani distillery. Afr J Biotechnol. 2011;10:11071.CrossRefGoogle Scholar
  4. Arshad M, Adil M, Sikandar A, Hussain T. Exploitation of meat industry by-products for biodiesel production: Pakistan’s perspective. Pakistan J Life Soc Sci. 2014a;12:120–5.Google Scholar
  5. Arshad M, Ahmed S, Zia MA, Rajoka MI. Kinetics and thermodynamics of ethanol production by Saccharomyces cerevisiae MLD10 using molasses. Appl Biochem Biotechnol. 2014b;172:2455–64.CrossRefGoogle Scholar
  6. Arshad M, Ahmed S. Cogeneration through bagasse: a renewable strategy to meet the future energy needs. Renew Sust Energ Rev. 2016;54:732–7.CrossRefGoogle Scholar
  7. Arshad M, Hussain T, Iqbal M, Abbas M. Enhanced ethanol production at commercial scale from molasses using high gravity technology by mutant S. cerevisiae. Brazilian J Microbiol. 2017. doi: 10.1016/j.bjm.2017.02.003.
  8. Bava SC. Alimentos Contaminados. Le Monde Diplomatique Brasil 2010; ed.33.Google Scholar
  9. Bevan RJ, Slack RJ, Holmes P, Levy SL. An assessment of potential cancer risk following occupational exposure to ethanol. J Toxicol Environ Health B Crit Rev. 2009;12:188–205.CrossRefGoogle Scholar
  10. Bhuiya MMK, Rasul MG, Khan MMK, Ashwath N, Azad AK. Prospects of 2nd generation biodiesel as a sustainable fuel-Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies. Renew Sust Energ Rev. 2016;55:1109–28.CrossRefGoogle Scholar
  11. Brody JG, Aschengrau A, McKelvey W, Swartz CH, Kennedy T, Rudel RA. Breast cancer risk and drinking water contaminated by wastewater: a case control study. Environ Health: A Global Access Sci Source. 2006;5:28.CrossRefGoogle Scholar
  12. Cançado JE, Saldiva PH, Pereira LA, Lara LB, Artaxo P, Martinelli LA, Arbex MA, Zanobetti A, Braga AL. The impact of sugar cane-burning emissions on the respiratory system of children and the elderly. Environ Health Perspect. 2006:725–9.Google Scholar
  13. Chum HL, Warner E, Seabra JE, Macedo IC. A comparison of commercial ethanol production systems from Brazilian sugarcane and US corn. Biofuels, Bioprod Biorefin. 2014;8:205–23.CrossRefGoogle Scholar
  14. De-Souza DA, Marchesan WG, Greene LJ. Epidemiological data and mortality rate of patients hospitalized with burns in Brazil. Burns. 1998;24:433–8.CrossRefGoogle Scholar
  15. Dominguez-Faus, Rosa, Susan E. Powers, Joel G. Burken, Pedro J. Alvarez. The water footprint of biofuels: a drink or drive issue? 2009:3005–10.Google Scholar
  16. Dutta K, Daverey A, Lin JG. Evolution retrospective for alternative fuels: first to fourth generation. Renew Energ. 2014;69:114–22.CrossRefGoogle Scholar
  17. Ernst A, Zibrak JD. Carbon monoxide poisoning. New England J Med. 1998;339:1603–8.CrossRefGoogle Scholar
  18. Galdos M, Cavalett O, Seabra JE, Nogueira LAH, Bonomi A. Trends in global warming and human health impacts related to Brazilian sugarcane ethanol production considering black carbon emissions. Appl Energ. 2013;104:576–82.CrossRefGoogle Scholar
  19. Ghozikali MG, Mosaferi M, Safari GH, Jaafari J. Effect of exposure to O3, NO2, and SO2 on chronic obstructive pulmonary disease hospitalizations in Tabriz, Iran. Environ Sci Pollut Res. 2015;22:2817–23.CrossRefGoogle Scholar
  20. Goldemberg J, Coelho ST, Guardabassi P. The sustainability of ethanol production from sugarcane. Energ Policy. 2008;36:2086–97.CrossRefGoogle Scholar
  21. Hill J, Polasky S, Nelson E, Tilman D, Huo H, Ludwig L, et al. Climate change and health costs of air emissions from biofuels and gasoline. Proc Natl Acad Sci. 2009;106:02077–82.CrossRefGoogle Scholar
  22. Irigaray P, Newby JA, Clapp R, Hardell L, Howard V, Montagnier L, et al. Life style-related factors and environmental agents causing cancer: an overview. Biomed Pharmacotherap. 2007;61:640–58.CrossRefGoogle Scholar
  23. Janke L, Leite AF, Nikolausz M, Radetski CM, Nelles M, Stinner W. Comparison of start-up strategies and process performance during semi-continuous anaerobic digestion of sugarcane filter cake co-digested with bagasse. Waste Manage. 2016;48:199–208.CrossRefGoogle Scholar
  24. Joelsson E, Erdei B, Galbe M, Wallberg O. Techno-economic evaluation of integrated first-and second-generation ethanol production from grain and straw. Biotechnol Biofuel. 2016;9:1.CrossRefGoogle Scholar
  25. Juberg DR, Kleiman CF, Kwon SC. Position paper of the American Council on Science and Health: lead and human health. Ecotoxicol Environ Safety. 1997;38:162–80.CrossRefGoogle Scholar
  26. Kampa M, Castanas E. Human health effects of air pollution. Environ Pollut. 2008;151:362–7.CrossRefGoogle Scholar
  27. Khuhawar MY, Baloch MA, Jahangir TM, Mahar MT, Majidano SA. Impacts of evaporation ponds of ethanol distillery spent wash on underground water. Pak J Chem. 2011;1(1):10–8.CrossRefGoogle Scholar
  28. Losordo Z, McBride J, Rooyen JV, Wenger K, Willies D, Froehlich A, et al. Cost competitive second-generation ethanol production from hemicellulose in a Brazilian sugarcane biorefinery. Biofuel Bioprod Biorefin. 2016;10:589–602.CrossRefGoogle Scholar
  29. Lu D, Zhang XJ. Biogas production from anaerobic codigestion of microalgae and septic sludge. J Environ Eng. 2016;142:04016049.CrossRefGoogle Scholar
  30. Mahar MT, Khuhawar MY, Baloch MA, Jahangir TM. Effects of spent wash of ethanol industry on groundwater: a case study of Rahimyar Khan district, Pakistan. J Environ Sci Water Resour. 2012;1:85–94.Google Scholar
  31. Mahar MT, Khuhawar MY, Jahangir TM, Baloch MA. Health risk assessment of heavy metals in groundwater: the effect of evaporation ponds of distillery spent wash. J Environ Sci Eng. 2013;2(3A):166.Google Scholar
  32. Mahdy A, Fotidis IA, Mancini E, Ballesteros M, González-Fernández C, Angelidaki I. Ammonia tolerant inocula provide a good base for anaerobic digestion of microalgae in third generation biogas process. Bioresour Technol. 2017;225:272–8.CrossRefGoogle Scholar
  33. McCormick RL. The impact of biodiesel on pollutant emissions and public health. Inhal Toxicol. 2007;19:1033–9.CrossRefGoogle Scholar
  34. McKelvey W, Brody JG, Aschengrau A, Swartz CH. Association between residence on Cape Cod, Massachusetts, and breast cancer. Ann Epidemiol. 2004;14:89–94.CrossRefGoogle Scholar
  35. Miraglia SGEK. Health, environmental, and economic costs from the use of a stabilized diesel/ethanol mixture in the city of Sa˜o Paulo, Brazil. Cad.Sau´ de Pu´ blica. 2007;23:S559–S569.Google Scholar
  36. Mittal S, Kaur G, Vishwakarma GS. Effects of environmental pesticides on the health of rural communities in the Malwa Region of Punjab, India: a review. Human Ecol Risk Ass: An Int J. 2014;20:366–87.CrossRefGoogle Scholar
  37. Morris R, Pollack A, Mansell G, Lindhjem C, Jia Y, Wilson G. Impact of biodiesel fuels on air quality and human health: summary report. Golden, Colorado: National Renewable Energy Laboratory; 2003.Google Scholar
  38. Niven RK. Ethanol in gasoline: environmental impacts and sustainability review article. Renew Sust Energ Rev. 2005;9:535–55.CrossRefGoogle Scholar
  39. O’Leary ES, Vena JE, Freudenheim JL, Brasure J. Pesticide exposure and risk of breast cancer: a nested case-control study of residentially stable women living on Long Island. Environ Res. 2004;94:134–44.CrossRefGoogle Scholar
  40. Palacios-Bereche R, Ensinas A, Modesto M, Nebra SA. New alternatives for the fermentation process in the ethanol production from sugarcane: extractive and low temperature fermentation. Energy. 2014;70:595–604.CrossRefGoogle Scholar
  41. Poeschl M, Ward S, Owende P. Environmental impacts of biogas deployment–Part I: life cycle inventory for evaluation of production process emissions to air. J Clean Prod. 2012;24:168–83.CrossRefGoogle Scholar
  42. Ridley CE, Clark CM, Leduc SD, Bierwagen BG, Lin BB, Mehl A, et al. Biofuels: network analysis of the literature revealskey environmental and economic unknowns. Environ Sci Technol. 2012;46:1309–15.CrossRefGoogle Scholar
  43. Saïdane-Bchir F, El Falleh A, Ghabbarou E, Hamdi M. 3rd generation bioethanol production from microalgae isolated from slaughterhouse wastewater. Waste Biomass Valor. 2016;7:1041–6.Google Scholar
  44. Scovronick N, Wilkinson P. Health impacts of liquid biofuel production and use: a review. Glob Environ Change. 2014;24:155–64.CrossRefGoogle Scholar
  45. Skuland TS, Refsnes M, Magnusson P, Oczkowski M, Gromadzka-Ostrowska J, Kruszewski M, et al. Pro inflammatory effects of diesel exhaust particles from moderate blend concentrations of 1st and 2nd generation biodiesel in BEAS-2B bronchial epithelial cells-the fuel health project. Environ Toxicol Phar. 2017;52:138–42.CrossRefGoogle Scholar
  46. Smeets EM, Bouwman LF, Stehfest E, Vuuren V, Detlef P, Posthuma A. Contribution of N2O to the greenhouse gas balance of first-generation biofuels. Glob Change Biol. 2009;15:1–23.CrossRefGoogle Scholar
  47. Solomon BD, Bailis R, editors. Sustainable development of biofuels in Latin America and the Caribbean. New York: Springer; 2014.Google Scholar
  48. Stürmer B. Feedstock change at biogas plants–Impact on production costs. Biomass Bioenerg. 2017;98:228–35.CrossRefGoogle Scholar
  49. Swanson KJ, Madden MC, Ghio AJ. Biodiesel exhaust: the need for health effects research. Environ Health Perspect. 2007;115:496–9.CrossRefGoogle Scholar
  50. Vieira VM, Webster TF, Weinberg JM, Aschengrau A. Spatial-temporal analysis of breast cancer in upper Cape-Cod, MA. Int J Health Geogr. 2008;7:46.CrossRefGoogle Scholar
  51. Ward MH, DeKok TM, Levallois P, Brender J, Gulis G, Nolan BT, VanDerslice J. Workgroup report: drinking-water nitrate and health-recent findings and research needs. Environ Health Perspect. 2005:1607–14.Google Scholar
  52. Weaver LK. Carbon monoxide poisoning. New England J Med. 2009;360:1217–25.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Muhammad Arshad
    • 1
  • Ijaz Bano
    • 1
  • Muhammad Younus
    • 1
  • Ammanullah Khan
    • 1
  • Abdur Rahman
    • 1
  1. 1.Jhang-CampusUniversity of Veterinary and Animal SciencesLahorePakistan

Personalised recommendations