Impact of Biofuel’s Production on Ground Water

  • Ijaz Bano
  • Muhammad Arshad


Groundwater is strategically significant due to its exceeding demand in agriculture, domestic and industrial uses. Global estimates show that approximately 4430 km3 of fresh water resources are abstracted annually for human consumption. Ground water may contain some unwanted matter with the microbes in its natural form but most of the impurities are being added through human activities. Problem of water pollution is more pronounced in localities where biofuel are produced. The generation of obscene wastewater in bulk is a great environmental apprehension. The chapter will discuss how wastewater generated from biofuel production is deteriorating the ground water quality. The treatment ways of the wastewater will also be discussed. Presence of organic and inorganic compounds in wastewaters release from biofuel production facilities making the ground water unfit for human consumption will be explore.


Climate change Ground water Biofuel Fresh water quality 


  1. Albert C, Hermes J, Neuendorf F, von Haaren C, Rode M. Assessing and governing ecosystem services trade-offs in agrarian landscapes: the case of biogas. Land. 2016;5:1.CrossRefGoogle Scholar
  2. Alexander M. Biodegradation and bioremediation. 2nd ed. San Diego, California: Academic Press; 1999.Google Scholar
  3. Allan RP, Soden BJ. Atmospheric warming and the amplification of precipitation extremes. Science. 2008;321:1481–4.CrossRefGoogle Scholar
  4. Allen TD, Kraus PF, Lawson PA, Drake GR, Balkwill DL, Tanner RS. Desulfovibrio carbinoliphilus sp., a benzyl alcohol-oxidizing, sulfate-reducing bacterium isolated from a gas condensate-contaminated aquifer. Int J Syst Evol Microbiol. 2008;58:1313–7.CrossRefGoogle Scholar
  5. Alvarez PJ, Illman WA. Bioremediation and natural attenuation: process fundamentals and mathematical models. Hoboken, New Jersey, USA: Wiley-Interscience; 2005. p. 28.CrossRefGoogle Scholar
  6. Alvarez PJ, Illman WA, eds. Bioremediation and natural attenuation: Process fundamentals and mathematical models. In: Schnoor JL, Zehnder A, editors. Environmental science and technology. Hoboken, New Jersey: Wiley; 2006.Google Scholar
  7. Anderson MP, Woessner WW, Hunt RJ. Applied groundwater modeling: simulation of flow and advective transport. Academic Press; 2015 Aug 13.Google Scholar
  8. Andersson V, Broberg S, Hackl R. Integrated algae cultivation for municipal wastewater treatment and biofuels production in industrial clusters. In: Proceedings of WREF, Denver, USA. 2012 May:13–7.Google Scholar
  9. Arain MB, Kazi TG, Jamali MK, Jalbani N, Afridi HI, Shah A. Total dissolved and bioavailable elements in water and sediment samples and their accumulation in Oreochromis mossambicus of polluted Manchar Lake. Chemosphere. 2008;70:1845–56.CrossRefGoogle Scholar
  10. Arshad M. Bioethanol: A sustainable and environment friendly solution for Pakistan. A Scientific J. COMSATS–Sci. Vision. 2010;16–7.Google Scholar
  11. Arshad M, Ahmed S. Cogeneration through bagasse: a renewable strategy to meet the future energy needs. Renew Sust Energ Rev. 2016;54:732–7.CrossRefGoogle Scholar
  12. Arshad M, Khan ZM, Shah FA, Rajoka MI. Optimization of process variables for minimization of byproduct formation during fermentation of blackstrap molasses to ethanol at industrial scale. Lett Appl Microbiol. 2008;47:410–4.CrossRefGoogle Scholar
  13. Arshad M, Zia MA, Asghar M, Bhatti H. Improving bio-ethanol yield: Using virginiamycin and sodium flouride at a Pakistani distillery. Afr J Biotechnol. 2011;10:11071.CrossRefGoogle Scholar
  14. Arshad M, Adil M, Sikandar A, Hussain T. Exploitation of meat industry by-products for biodiesel production: Pakistan’s perspective. Pakistan J Life Soc Sci. 2014a;12:120–5.Google Scholar
  15. Arshad M, Ahmed S, Zia MA, Rajoka MI. Kinetics and thermodynamics of ethanol production by Saccharomyces cerevisiae MLD10 using molasses. Appl Biochem Biotechnol. 2014b;172:2455–64.CrossRefGoogle Scholar
  16. Arshad M, Hussain T, Iqbal M, Abbas M. Enhanced ethanol production at commercial scale from molasses using high gravity technology by mutant S. cerevisiae. Brazilian J Microbiol. 2017.
  17. Ayyasamy PM, Yasodha R, Rajakumar S, Lakshmanaperumalsamy PK, Rahman PK, Lee S. Impact of sugar factory effluent on the growth and biochemical characteristics of terrestrial and aquatic plants. Bull Environ Contam Toxicol. 2008;81:449–54.CrossRefGoogle Scholar
  18. Babel MS, Shrestha B, Perret SR. Hydrological impact of biofuel production: a case study of the Khlong Phlo watershed in Thailand. Agric Water Manag. 2011;101:8–26.CrossRefGoogle Scholar
  19. Baskaran S, Ransley T, Brodie RS, Baker P. Investigating groundwater–river interactions using environmental tracers. Australian J Earth Sci. 2009;56:13–9.CrossRefGoogle Scholar
  20. Bates BC, Kundzewicz ZW, Wu, S, Palutikof JP. Climate change and water technical paper of the intergovernmental panel on climate change VI (IPCC, 2008).Google Scholar
  21. Beal CM, Hebner RE, Webber ME, Ruoff RS, Seibert AF, King CW. Comprehensive evaluation of algal biofuel production: experimental and target results. Energies. 2012;5:1943–81.CrossRefGoogle Scholar
  22. Belova SE, Pankratov TA, Dedysh SN. Bacteria of the genus Burkholderia as a typical component of the microbial community of Sphagnum peat bogs. Microbiol. 2006;75:90–6.CrossRefGoogle Scholar
  23. Bjerketvedt D, Bakke JR, van Wingerden K. Gas explosion handbook. J Hazard Mater. 1997;52:1–150.CrossRefGoogle Scholar
  24. Blackbourne R, Vadivelu VM, Yuan Z, Keller J. Kinetic characterisation of an enriched Nitrospira culture with comparison to Nitrobacter. Water Res. 2007;41:3033–42.CrossRefGoogle Scholar
  25. Brender JD, Weyer PJ, Romitti PA, Mohanty BP, Shinde MU, Vuong AM, et al. Prenatal nitrate-N intake from drinking water and selected birth defects in offspring of participants in the national birth defects prevention study. Environ Health Perspect. 2013;121:1083–9.Google Scholar
  26. Capiro NL, Stafford BP, Rixey WG, Bedient PB, Alvarez PJJ. Fuelgrade ethanol transport and impacts to groundwater in a pilotscale aquifer tank. Water Res. 2007;41:656–64.CrossRefGoogle Scholar
  27. Chauhan A, Ogram A. Fatty acid-oxidizing consortia along a nutrient gradient in the Florida Everglades. Appl Environ Microbiol. 2006;72:2400–6.CrossRefGoogle Scholar
  28. Chen CS, Lai YW, Tien CJ. Partitioning of aromatic and oxygenated constituents into water from regular and ethanol blended gasolines. Environ Pollut. 2008;156:988–96.CrossRefGoogle Scholar
  29. Chen CS, Shu YY, Wu SH, Tien CJ. Assessing soil and groundwater contamination from biofuel spills. Environ Sci. 2015;17:533–42.Google Scholar
  30. Chen Y, Ale S, Rajan N, Morgan CL, Park J. Hydrological responses of land use change from cotton (Gossypium hirsutum L.) to cellulosic bioenergy crops in the Southern High Plains of Texas, USA. Gcb Bioenergy. 2015b.Google Scholar
  31. Chiu Y-W, Walseth B, Suh S. Water embodies in bioethanol in the United States. Environ Sci Technol. 2009;43:2688–92.CrossRefGoogle Scholar
  32. Chiu Y-W, Wu M. Considering water availability and wastewater resources in the development of algal bio-oil. BioFPR. 2013;7:406–15.Google Scholar
  33. Clark MK, Peterson JM. Biofuel boom, aquifer loom. In: Selected paper prepared for presentation at the American agricultural economics association annual meeting, Orlando, Florida July. 2008.Google Scholar
  34. Cord-Ruwisch R, Lovley DR, Schink B. Growth of Geobacter sulfurreducens with acetate in syntrophic cooperation with hydrogen-oxidizing anaerobic partners. Appl Environ Microbiol. 1998;64:2232–6.Google Scholar
  35. Corseuil HX, Monier AL, Gomes AP, Chiaranda HS, do Rosario M, d Alvarez PJ. Biodegradation of soybean and castor oil biodiesel: implications on the natural attenuation of monoaromatic hydrocarbons in groundwater. Ground Water Monit Remed. 2011;31:111–8.Google Scholar
  36. Cramm R. Genomic view of energy metabolism in Ralstonia eutropha H16. J Mol Microbiol Biotechnol. 2009;16:38–52.CrossRefGoogle Scholar
  37. De Fraiture C, Giordano M, Liao Y. Biofuels and implications for agricultural water use: blue impacts of green energy. Water Policy. 2008;10:67–81.CrossRefGoogle Scholar
  38. De Marsily G, Abarca-del-Rio R. Water and food in the twenty-first century. Surveys Geophy. 2016;37:503–27.CrossRefGoogle Scholar
  39. Delucchi MA. Impacts of biofuels on climate change, water use, and land use. Ann N Y Acad Sci. 2010;1195:28–45.CrossRefGoogle Scholar
  40. Dixit S, Tiwari S. Impact assessment of heavy metal pollution of Shahpuralake, Bhopal. India. Int J Environ Res. 2008;2:37–42.Google Scholar
  41. Döll P. Impact of climate change and variability on irrigation requirements: a global perspective. Clim Change. 2002;54:269–93.CrossRefGoogle Scholar
  42. Efroymson RA, Dale VH. Environmental indicators for sustainable production of algal biofuels. Ecol Ind. 2015;28:49:1–3.Google Scholar
  43. Eisentraut A. The biofuel and bioenergy roadmaps of the international energy agency. In Dallemand JF, Gerbens-Leenes PW, editors. Bioenergy and water, JRC Technical Report, The Netherlands. 2013.Google Scholar
  44. EPA: National Secondary Drinking Water Regulations. Washington, DC, USA: U.S. Environmental Protection Agency. 2002.
  45. Erisman, JW, Enrico D, Martin Van D, Nadejda S, and Martijn S. Impacts Ecosystems. (2015).Google Scholar
  46. Foster S, Tyson G, Ferguson G, Younger P, Bath A, Evans R, et al. The energy sector and groundwater. Bruce Misstear and John Chilton. 2015.Google Scholar
  47. Freitas JG, Barker JF. Oxygenated gasoline release in the unsaturated zone – Part 1: source zone behavior. J Contam Hydrol. 2011;126:153–66.CrossRefGoogle Scholar
  48. Freitas JG, Fletcher B, Aravena R, Barker JF. Methane production and isotopic fingerprinting in ethanol fuel contaminated sites. Ground Water. 2010;48:844–57.CrossRefGoogle Scholar
  49. Fuchs G, Boll M, Heider J. Microbial degradation of aromatic compounds-from one strategy to four. Nat Rev Microbiol. 2011;9:803–16.CrossRefGoogle Scholar
  50. Garcia V, Cooter E, Crooks J, Hinckley B, Murphy M, Xing X. Examining the impacts of increased corn production on groundwater quality using a coupled modeling system. Sci Total Environ. 2017;586:16–24.CrossRefGoogle Scholar
  51. Garg M, Kavita VK, Malik RA. Groundwater quality in some villages of Haryana India: focus on fluoride and fluorosis. J Hazard Mater. 2004;106B:85–97.Google Scholar
  52. Green CT, Heather W, Richard C. Multi-tracer analysis of vertical nitrate fluxes in the Mississippi River Valley alluvial aquifer [abs.]. In: Eos transactions of the American Geophysical Union. 2009;90:H31C–0799.Google Scholar
  53. Gupta GS, Gupta MK, Alpana G, Anjani G. Assessment of physic-chemical characteristics of hand pumps water of Banda city Indian. J Environ Prot. 2014;34:51–4.Google Scholar
  54. Hall ND, Stuntz BB, Abrams RH. Climate change and freshwater resources. Nat Resour Environ. 2008;22:30–5.Google Scholar
  55. Hatamono M, Imachi H, Yashiro Y, Ohashi A, Harada H. Diversity of anaerobic microorganisms involved in long-chain fatty acid degradation in methanogenic sludges as revealed by RNA-based stable isotope probing. Appl Environ Microbiol. 2007;73:4119–27.CrossRefGoogle Scholar
  56. Haydar S, Qasim MM. A study of water quality of Sargodha city. Pak J Engg Appl Sci. 2013;13:110–7.Google Scholar
  57. He Q, Sanford RA. Acetate threshold concentrations suggest varying energy requirements during anaerobic respiration by Anaeromyxobacter dehalogenans. Appl Environ Microbiol. 2004;70:6940–3.CrossRefGoogle Scholar
  58. He XH, Stafford BP, Rixey WG. Ethanol-enhanced dissolution of a residually trapped synthetic gasoline source. Ground Water Monit Remed. 2011;31:61–8.CrossRefGoogle Scholar
  59. Huffaker R. Protecting water resources in biofuels production. Water Policy. 2010;12:129–34.CrossRefGoogle Scholar
  60. Imachi H, Sekiguchi Y, Kamagata Y, Hanada S, Ohashi A, Harada H. Pelotomaculum thermopropionicum gen. nov., sp. nov., an anaerobic, thermophilic, syntrophic propionate-oxidizing bacterium. Int J Syst Evol Microbiol. 2002;52:1729–35.Google Scholar
  61. Ingram LO, Buttke TM. Effects of alcohols on microorganisms. Adv Microb Physiol. 1984;25:253–300.CrossRefGoogle Scholar
  62. Jewell KP, Wilson JT. A new screening method for methane in soil gas using existing groundwater monitoring wells. Ground Water Monit Rremediation. 2011;31:82–94.CrossRefGoogle Scholar
  63. Johnson PTJ, Townsend AR, Cleveland CC, Glibert PM, Howarth RW, McKenzie VJ, et al. Linking environmental nutrient enrichment and disease emergence in humans and wildlife. Ecol Appl. 2010;20:16–29.CrossRefGoogle Scholar
  64. Jones WR, Spence MJ, Bowman AW, Evers L, Molinari DA. A software tool for the spatiotemporal analysis and reporting of groundwater monitoring data. Environ Model Softw. 2014;55:242–9.CrossRefGoogle Scholar
  65. Khan MU, Malik RN, Muhammad S. Human health risk from heavy metal via food crops consumption with wastewater irrigation practices in Pakistan. Chemosphere. 2013;93:2230–8.CrossRefGoogle Scholar
  66. Khuhawar MY, Baloch MA, Jahangir TM, Mahar MT, Majidano SA. Impacts of evaporation ponds of ethanol distillery spent wash on underground water. Pak J Chem. 2011;1:10–8.CrossRefGoogle Scholar
  67. Kinzelbach W, Bauer P, Siegfried T, Brunner P. Sustainable groundwater management-problems and scientific tools. Institute for Hydromechanics and water resources management, ETH, Zurich, Switzerland. 2003;26:279–83.Google Scholar
  68. Kjeldsen P. Landfill gas migration in soil. In Landfilling of Waste: Biogas. Edited by Christensen TH, Cossu R, Stegmann R. London, UK: E & FN Spon; 1996.Google Scholar
  69. Kothari R, Pathak V, Kumar V, Singh DP. Experimental study for growth potential of unicellular alga Chlorella pyrenoidosa on dairy wastewater: an integrated approach for treatment and biofuel production. Bioresour Technol. 2012;16:466–70.CrossRefGoogle Scholar
  70. Kumar S, Gopal K. Impact of distillery effluent on physiological consequences in the freshwater teleost Channa punctatus. Bull Environ Contam Toxicol. 2001;66:617–22.Google Scholar
  71. Kunapuli U, Jahn MK, Lueders T, Geyer R, Hermann JH, Meckenstock RU. Desulfitobacterium aromaticivorans sp. nov. and Gebacter toluenoxydans sp. nov., iron-reducing bacteria capable of anaerobic degradation of monoaromatic hydrocarbons. Int J Syst Evol Microbiol. 2010;60:686–95.CrossRefGoogle Scholar
  72. Li R, Merchant JW. Modeling vulnerability of groundwater to pollution under future scenarios of climate change and biofuels-related land use change: a case study in North Dakota. USA. Sci Total Environ. 2013;447:32–45.CrossRefGoogle Scholar
  73. Lima G, Parker B, Meyer J. Dechlorinating microorganisms in a sedimentary rock matrix contaminated with a mixture of VOCs. Environ Sci Technol. 2012;46:5756–63.CrossRefGoogle Scholar
  74. Ma J, Xiu Z, Monier A, Mamonkina I, Zhang Y, He Y, et al. Aesthetic groundwater quality Impacts from a continuous pilot-scale release of an ethanol blend. Ground Water Monit Remed. 2011;31:47–54.CrossRefGoogle Scholar
  75. Mahar MT, Khuhawar MY, Baloch MA, Jahangir TM. Effects of spent wash of ethanol industry on groundwater: a case study of Rahimyar Khan district,Pakistan. J Environ Sci Water Resour. 2012;1:85–94.Google Scholar
  76. Mahar MT, Khuhawar MY, Jahangir TM, Baloch MA. health risk assessment of heavy metals in groundwater: The effect of evaporation ponds of distillery spent wash. J Environ Sci Eng. 2013;2:166.Google Scholar
  77. Manjunath AV, Chengapp PG, Chandrakanth MG. Externalities due to sand mining and distillery effluent in water streams of india. J Glob Economy. 2006;2.Google Scholar
  78. Molson J, Mocanu M, Barker J. Numerical analysis of buoyancy effects during the dissolution and transport of oxygenated gasoline in groundwater. Water Resour Res. 2008;44:W07418.CrossRefGoogle Scholar
  79. Nazina TN, Tourova TP, Poltaraus AB, Novikova EV, Grigoryan AA, Ivanova AE, et al. Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensissp nov. from petroleum reservoirs and transfer of Bacillus stearothermophilusBacillus thermo-catenulatusBacillus thermoleovoransBacillus kaustophilusBacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilusG. thermocatenulatusG. thermoleovoransG. kaustophilusG. thermoglucosidasius and G. thermodenitrificans. Int J Syst Evol Microbiol. 2001;51:433–46.Google Scholar
  80. Nevin KP, Lovley DR. Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans. Appl Environ Microbiol. 2002;68:2294–9.CrossRefGoogle Scholar
  81. O’Sullivan LA, Mahenthiralingam E. Biotechnological potential within the genus Burkholderia. Lett Appl Microbiol. 2005;41:8–11.CrossRefGoogle Scholar
  82. Piątek M, Lisowski A, Kasprzycka A, Lisowska B. The dynamics of an anaerobic digestion of crop substrates with an unfavourable carbon to nitrogen ratio. Bioresour Technol. 2016;216:607–12.CrossRefGoogle Scholar
  83. Powers SE, Hunt CS, Heermann SE, Corseuil HX, Rice D, Alvarez PJJ. The transport and fate of ethanol and BTEX in groundwater contaminated by gasohol. Crit Rev Environ Sci Technol. 2001;31:79–123.CrossRefGoogle Scholar
  84. Rahman MM, Naidu R, Bhattacharya P. Arsenic contamination in groundwater in the Southeast Asia region. Environ Geochem Health. 2009;31:9–21.CrossRefGoogle Scholar
  85. Ramamoorthy S, Sass H, Langner H, Schumann P, Kroppenstedt RM, Spring S, Overmann J, Rosenzweig RF. Desulfosporosinus lacus sp. nov., a sulfate-reducing bacterium isolated from pristine freshwater lake sediments. Int J Syst Evol Microbiol. 2006;56:2729–36.CrossRefGoogle Scholar
  86. Ramos DT, da Silva ML, Nossa CW, Alvarez PJ, Corseuil HX. Assessment of microbial communities associated with fermentative–methanogenic biodegradation of aromatic hydrocarbons in groundwater contaminated with a biodiesel blend (B20). Biodegradation. 2014;25:681–91.CrossRefGoogle Scholar
  87. Ramos DT, Lazzarin HSC, Alvarez PJ, Vogel TM, Fernandes M, Do Rosario M, et al. Biodiesel presence in the source zone hinders aromatic hydrocarbons attenuation in a B20-contaminated groundwater. J Contam Hydrol. 2016;193:48–53.CrossRefGoogle Scholar
  88. Rapant S, Krcmova K. Health risk assessment maps for arsenic groundwater content, application of national geochemical databases. Environ Geochem Health. 2007;29:131e141.Google Scholar
  89. Ray D, Rao RR, Bhoi AV, Biswas AK, Ganguly AK, Sanyal PB. Physico-chemical quality of drinking water in Rohtas district of Bihar. Environ Monit Ass. 2000;61:387.CrossRefGoogle Scholar
  90. Renault D, Wallender WW. Nutritional water productivity and diets. Agric Water Manag. 2000;45:275–96.CrossRefGoogle Scholar
  91. Ribaudo M, Delgado J, Hansen L, Livingston M, Mosheim R, Williamson J. Nitrogen in agricultural systems: implications for conservation policy. Economic Research Report (ERR Number 127). US Department of Agriculture (USDA), 2011.Google Scholar
  92. Roberts GW, Fortier MP, Sturm BSM, Stagg-Williams SM. Promising pathway for algal biofuels through wastewater cultivation and hydrothermal conversion. Energ Fuel. 2013;27:857–67.CrossRefGoogle Scholar
  93. Rosenzweig C, Casassa G, Karoly DJ, Imeson A, Liu C, Menzel A, et al. Assessment of observed changes and responses in natural and managed systems. Climate change 2007: impacts, adaptation and vulnerability. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE, editors. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge, UK: Cambridge University Press; 2007. PP. 79–131.Google Scholar
  94. Sampat P. Groundwater shock: the polluting of the world’s major freshwater stores. World Watch. 2000;13:10–22.Google Scholar
  95. Schilling KE, Jacobson PJ, Libra RD, Gannon JM, Langel R, Peate DW. Estimating groundwater age in the Cambrian-Ordovician aquifer in Iowa: implications for biofuel production and other water uses. Environ Earth Sci. 2017;76:2–9.CrossRefGoogle Scholar
  96. Sesmero JP. Cellulosic biofuels from crop residue and groundwater extraction in the US Plains: the case of Nebraska. J Environ Manag. 2014;144:218–25.Google Scholar
  97. Sobota DJ, Compton JE, Harrison JA. Reactive nitrogen inputs to US lands and waterways: how certain are we about sources and fluxes? Front Ecol Environ. 2013;11:82–90.CrossRefGoogle Scholar
  98. Spalding RF, Toso MA, Exner ME, Hattan G, Higgins TM, Sekely AC. Long-term groundwater monitoring results at large, sudden denatured ethanol releases. Ground Water Monit Remed. 2011;31:69–81.CrossRefGoogle Scholar
  99. Stafford BP, Capiro NL, Alvarez PJJ, Rixey WG. Pore water characteristics following a release of neat ethanol onto preexisting NAPL. Ground Water Monit Remed. 2009;29:93–104.CrossRefGoogle Scholar
  100. Taylor RG, Scanlon B, Döll P, Rodell M, Van Beek R, Wada Y, Longuevergne L, Leblanc M, Famiglietti JS, Edmunds M, Konikow L. Ground water and climate change. Nature Climate Change. 2013;3:322–9.CrossRefGoogle Scholar
  101. Tyagi AC. Biofuels and irrigation. Irrig Drain. 2015;64:297–8.CrossRefGoogle Scholar
  102. Ullah R, Malik RN, Qadir A. Assessment of groundwater contamination in an industrial city, Sialkot, Pakistan. African J Environ Sci Technol. 2009;3:12.Google Scholar
  103. Vasudevan V, Stratton RW, Pearlson MN, Jersey GR, Beyene AG, Weissman JC, et al. Environmental performance of algal biofuel technology options. Environ Sci Tchnol. 2012;46(4):2451–9.CrossRefGoogle Scholar
  104. Venteris ER, Skaggs RL, Coleman AM, Wigmosta MS. A GIS cost model to assess the availability of freshwater, seawater, and saline groundwater for algal biofuel production in the United States. Environ Sci Tchnol. 2013;47(9):4840–9.CrossRefGoogle Scholar
  105. Villemur R, Lanthier M, Beaudet R, Lépine F. The Desulfitobacterium genus. FEMS Microbiol Rev. 2006;30:706–33.CrossRefGoogle Scholar
  106. Vinson DS, Lundy JR, Dwyer GS, Vengosh A. Implications of carbonate-like geochemical signatures in a sandstone aquifer: radium and strontium isotopes in the Cambrian Jordan aquifer (Minnesota, USA). Chem Geol. 2012;334:280–94.CrossRefGoogle Scholar
  107. Ward MH, deKok TM, Levallois P, Brender JD, Gulis G, Nolan BT, et al. Workgroup report: drinking-water nitrate-N and health-recent findings and research needs. Environ Health Perspect. 2005;113:1607–14.CrossRefGoogle Scholar
  108. Welch HL, Green CT, Rebich RA, Barlow JR, Hicks MB. Unintended consequences of biofuels production? The effects of large-scale crop conversion on water quality and quantity. U. S. Geological Survey. 2010.Google Scholar
  109. Wilhelm WW, Hess JR, Karlen DL, Johnson JMF, Muth D, Baker JM, et al. Balancing limiting factors and economic drivers for sustainable Midwestern US agricultural residue feedstock supplies. Indus Biotechnol. 2010;6:271–87.CrossRefGoogle Scholar
  110. Williams GM, Aitkenhead N. Lessons from Loscoe-the uncontrolled migration of landfill gas. Q J Eng Geol. 1991;24:191–207.CrossRefGoogle Scholar
  111. Workocha GA. Impacts of industrial effluents on water body and health of oil producing communities in reverse state. Res J Int Stud. 2011;18:35–40.Google Scholar
  112. Yu S, Freitas JG, Unger AJA, Barker JF, Chatzis J. Simulating the evolution of an ethanol and gasoline source zone within the capillary fringe. J Contam Hydrol. 2009;105:1–17.CrossRefGoogle Scholar
  113. Zhang X, Peterson C, Reece D, Haws R, Moller G. Biodegradability of biodiesel in the aquatic environment. Transactions Am Soc Agric Eng. 1998;41:1423–30.CrossRefGoogle Scholar
  114. Zhao RF, Chen XP, Zhang FS, Zhang H, Schroder J, Römheld V. Fertilization and nitrogen balance in a wheat–maize rotation system in North China. Agronomy J. 2006;98:938–45.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Jhang-CampusUniversity of Veterinary and Animal SciencesLahorePakistan

Personalised recommendations