Skip to main content

Water Sustainability Issues in Biofuel Production

  • Chapter
  • First Online:
Perspectives on Water Usage for Biofuels Production

Abstract

Biofuel production process use fresh water collected mainly from surface water flows or from underground natural reservoirs for different activities and it became contaminated with organic and inorganic pollutants. Waste water quality returned to soil and to surface water flows is very poor. To produce one liter of ethanol, 10–17 L of water are consumed. Biofuel production plants are water intensive and there is an upward trend in water consumption. The chapter will describe agricultural and industrial activities involving current water consumption during biofuel production. Major steps of lifecycles for biofuel production pathways: bioethanol from sugarcane molasses and cellulosic feedstock, Biogas from distillery spent wash and Biodiesel from various sources will be evaluated regarding water consumption. The amount of irrigation water used in growth of biofuel feedstock and water consumption for biofuel production through various processing technologies will be analyzed. The vital importance of water management during the feedstock production and conversion stage of the biofuel’s lifecycle will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adelt M, Wolf D, Vogel A. LCA of biomethane. J Nat Gas Sci Eng. 2011;3:646–50.

    Article  Google Scholar 

  • Adeoti O. Water use impact of ethanol at a gasoline substitution ratio of 5% from cassava in Nigeria. Biomass Bioenerg. 2010;34:985–92.

    Article  Google Scholar 

  • Amin S. Review on biofuel oil and gas production processes from microalgae. Energ Convers Manage. 2009;50:1834–40.

    Article  Google Scholar 

  • Andrews WJ, Osborn NI, Luckey RR. Rapid recharge of parts of the high plains aquifer indicated by a reconnaissance study in oklahoma. US Geological Survey Fact Sheet 137-00; 1999. http://www.owrb.ok.gov/studies/reports/reports_pdf/high_plains_2.pdf.

  • Arshad M. Bioethanol: A sustainable and environment friendly solution for Pakistan. A Sci J COMSATS–Sci. Vision. 2010;16–7.

    Google Scholar 

  • Arshad M, Ahmed S. Cogeneration through bagasse: a renewable strategy to meet the future energy needs. Renew Sust Energ Rev. 2016;54:732–7.

    Article  Google Scholar 

  • Arshad M, Khan ZM, Shah FA, Rajoka MI. Optimization of process variables for minimization of byproduct formation during fermentation of blackstrap molasses to ethanol at industrial scale. Lett Appl Microbiol. 2008;47:410–4.

    Article  Google Scholar 

  • Arshad M, Zia MA, Asghar M, Bhatti H. Improving bio-ethanol yield: Using virginiamycin and sodium flouride at a Pakistani distillery. Afr J Biotechnol. 2011;10:11071.

    Article  Google Scholar 

  • Arshad M, Adil M, Sikandar A, Hussain T. Exploitation of meat industry by-products for biodiesel production: Pakistan’s perspective. Pakistan J Life Soc Sci. 2014a;12:120–5.

    Google Scholar 

  • Arshad M, Ahmed S, Zia MA, Rajoka MI. Kinetics and thermodynamics of ethanol production by Saccharomyces cerevisiae MLD10 using molasses. Appl Biochem Biotechnol. 2014b;172:2455–64.

    Article  Google Scholar 

  • Arshad M, Hussain T, Iqbal M, Abbas M. Enhanced ethanol production at commercial scale from molasses using high gravity technology by mutant S. cerevisiae. Brazilian J Microbiol. 2017. http://doi.org/10.1016/j.bjm.2017.02.003.

  • Babel MS, Shrestha B, Perret SR. Hydrological impact of biofuel production: a case study of the Khlong Phlo Watershed in Thailand. Agric Water Manage. 2011;101:8–26.

    Article  Google Scholar 

  • Bansal V, Tumwesige V, Smith JU. Water for small‐scale biogas digesters in Sub‐Saharan Africa. GCB Bioenerg. 2016.

    Google Scholar 

  • Basiron Y. Palm oil production through sustainable plantations. Eur J Lipid Sci Tech. 2007;109:289–95.

    Article  Google Scholar 

  • Baubock R, Karpenstein-Machan M, Kappas M. Computing the biomass potentials for maize and two alternative energy crops, triticale and cup plant (Silphium perfoliatum L.), with the crop model BioSTAR in the region of Hannover (Germany). Environ Sci Eur. 2014;26:19.

    Google Scholar 

  • Berg C, Licht FO. World fuel ethanol. Analysis and outlook, report for FO Licht. 2004.

    Google Scholar 

  • Bokanga M. Biotechnology and cassava processing in Africa. IITA Res. 1996;12:14–8.

    Google Scholar 

  • Bot P, van Donk DP, Pennink B, Simatupang TM. Uncertainties in the bidirectional biodiesel supply chain. J Clean Prod. 2015;95:174–83.

    Article  Google Scholar 

  • Braun R, Weiland P, Wellinger A. Biogas from energy crop digestion. InIEA bioenergy task 2008 (vol. 37, pp. 1–20).

    Google Scholar 

  • Brennan L, Owende P. Biofuels from microalgae-a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev. 2010;14:557–77.

    Article  Google Scholar 

  • Campbell PK, Beer T, Batten D. Life cycle assessment of biodiesel production from microalgae in ponds. Bioresour Technol. 2011;102:50–6.

    Article  Google Scholar 

  • Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25:294–306.

    Article  Google Scholar 

  • Chiu YW, Walseth B, Suh S. Water embodied in bioethanol in the United States. Environ Sci Technol. 2009;43:2688–92.

    Article  Google Scholar 

  • Clarens AF, Resurreccion EP, White MA, Colosi LM. Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol. 2010;44:1813–9.

    Article  Google Scholar 

  • Crago CL, Khanna M, Barton J, Giuliani E, Amaral W. Competitiveness of Brazilian sugarcane ethanol compared to US corn ethanol. Energy Policy. 2010;38:7404–15.

    Article  Google Scholar 

  • De Fraiture C, Giordano M, Liao Y. Biofuels and implications for agricultural water use: blue impacts of green energy. Water Policy. 2008;10(S1):67–81.

    Article  Google Scholar 

  • De Fraiture C, Berndes G. Biofuels and water. RW Howarth and S. Bringezu (eds.). 2009:139–53.

    Google Scholar 

  • DOE-EIA, 2007. Country analysis briefs: Brazil http://www.eia.doe.gov/emeu/cabs/Brazil/pdf.pdf. Department of Energy, Energy Information Administration, Washington, DC.

  • Doran JW, Wilhelm WW, Power JF. Crop residue removal and soil productivity with no-till corn, sorghum, and soybean. Soil Sci Soc Am J. 1984;48:640–5.

    Article  Google Scholar 

  • Duguma LA, Minang PA, van Noordwijk M. Climate change mitigation and adaptation in the land use sector: from complementarity to synergy. Environ Manage. 2014;54:420–32.

    Article  Google Scholar 

  • Earth Policy Institute, 2012. Full planet, empty plates Chapter 4 Data: Food or Fuel? http://www.earth-policy.org/?/data_center/C24/.

  • Eaves J, Eaves S. Renewable corn-ethanol and energy security. Energ Policy. 2007;35:5958–63.

    Article  Google Scholar 

  • European Commission, 2010. Trends to 2030 update. http://ec.europa.eu/energy/observatory/trends_2030/doc/trends_to_2030_update_2009.pdf.

  • Fageria NK, Baligar VC, Jones CA. Growth and mineral nutrition of field crops. CRC Press; 2010.

    Google Scholar 

  • FAO, 2008. Major Food and agricultural commodities and producers: countries by commodity. http://www.fao.org/es/ess/top/commodity.html?lang=en&item=156&year=2005.

  • Fischer G, Hizsnyik E, Prieler S, Shah M, Van Velthuizen H. Biofuels and food security. Laxenburg, Austria: Int Inst Appl Syst Anal; 2009.

    Google Scholar 

  • Franzaring J, Schmid I, B€auerle L, Gensheimer G, Fangmeier A. Investigations on plant functional traits, epidermal structures and the ecophysiology of the novel bioenergy species Sida hermaphrodita Rusby and Silphium perfoliatum L. J Appl Bot Food Qual. 2014;87:36–45.

    Google Scholar 

  • Gallagher DL, Dietrich AM, Reay WG, Hayes MC, Simmons GM. Ground water discharge of agricultural pesticides and nutrients to estuarine surface water. Ground Water Monit Remed. 1996;16:118–29.

    Article  Google Scholar 

  • Gerbens-Leenes W, Hoekstra AY. The water footprint of sweeteners and bio-ethanol. Environ Int. 2012;40:202–11.

    Article  Google Scholar 

  • Gheewala SH, Silalertruksa T, Nilsalab P, Mungkung R, Perret SR, Chaiyawannakarn N. Implications of the biofuels policy mandate in Thailand on water: the case of bioethanol. Bioresour Technol. 2013;150:457–65.

    Article  Google Scholar 

  • Gheewala SH, Silalertusksa T, Nilsalab P, Mungkung R, Perret SR, Chaiyawannakarn N. Water footprint and impact of water consumption for food, feed, fuel crops production in Thailand. Water. 2014;6:1698–718.

    Article  Google Scholar 

  • Gleick PH. The world’s water volume 8: The biennial report on freshwater resources (vol. 8). Island Press; 2014.

    Google Scholar 

  • Goldemberg J, Coelho ST, Guardabassi P. The sustainability of ethanol production from sugarcane. Energ Policy. 2008;36:2086–97.

    Article  Google Scholar 

  • Gupta A, Verma JP. Sustainable bio-ethanol production from agro-residues: a review. Renew Sust Energ Rev. 2015;41:5–567.

    Google Scholar 

  • Hoekstra AY, Hung PQ. Virtual water trade. A quantification of virtual water flows between nations in relation to international crop trade. Value of water research report series. 2002;11:166.

    Google Scholar 

  • Hoekstra AY, Chapagain AK, Aldaya MM, Mekonnen MM. The water footprint assessment manual: setting the global standard. Routledge; 2011.

    Google Scholar 

  • Ings J, Mur LA, Robson PR, Bosch M. Physiological and growth responses to water deficit in the bioenergy crop Miscanthus x giganteus. Front Plant Sci. 2013;4:468.

    Article  Google Scholar 

  • Jager HI, Baskaran LM, Schweizer PE, Turhollow AF, Brandt CC, Srinivasan R. Forecasting changes in water quality in rivers associated with growing biofuels in the Arkansas-White-Red river drainage, USA. Gcb Bioenerg. 2015;7:774–84.

    Article  Google Scholar 

  • Jalava M, Guillaume JH, Kummu M, Porkka M, Siebert S, Varis O. Diet change and food loss reduction: what is their combined impact on global water use and scarcity? Earth’s Future. 2016;4:62–78.

    Google Scholar 

  • Jindal S, Goyal K. Evaluation of performance and emissions of Hibiscus cannabinus (Ambadi) seed oil biodiesel. Clean Technol Environ Policy. 2012;14:633–9.

    Article  Google Scholar 

  • Kahinda JM, Taigbenu AE. Rainwater harvesting in South Africa: challenges and opportunities. Physics and Chemistry of the Earth, Parts A/B/C. 2011;36:968–76.

    Article  Google Scholar 

  • King CW, Webber ME. Water intensity of transportation. Environ Sci Technol. 2008;42:7866–72.

    Article  Google Scholar 

  • Liu X, Clarens AF, Colosi LM. Algae biodiesel has potential despite inconclusive results to date. Bioresour Technol. 2012;104:803–6.

    Article  Google Scholar 

  • Loehr R. Agricultural waste management: problems, processes, and approaches. Elsevier. 2012.

    Google Scholar 

  • Loucks DP, Van Beek E, Stedinger JR, Dijkman JP, Villars MT. Water resources systems planning and management: an introduction to methods, models and applications. Paris: UNESCO; 2005.

    Google Scholar 

  • Macedo IC. Chapter 5: Impacts on water supply. Sugarcane’s energy-12 studies on Brazilian sugarcane agribusiness and its suitability, São Paulo Sugar Cane Agroindustry Union. 2005. http://english.unica.com.br/multimedia/publicacao/. Accessed 18 Sept 2008.

  • Mann L, Tolbert V, Cushman J. Potential environmental effects of corn (Zea mays L.) stover removal with emphasis on soil organic matter and erosion. Agric Ecosyst Environ. 2002;89:149–66.

    Article  Google Scholar 

  • Mantovani D, Veste M, Gypser S, Halke C, Koning L, et al. Transpiration and biomass production of the bioenergy crop Giant Knotweed Igniscum under various supplies of water and nutrients. J Hydrol Hydromech. 2014;62:316–23.

    Article  Google Scholar 

  • Maupin MA, Barber NL. Estimated withdrawals from principal aquifers in the United States, 2000.US Geological Survey Circular 1279, US Geological Survey, Reston, 2005; VA, 47pp.

    Google Scholar 

  • Mekonnen MM, Hoekstra AY. The green, blue and grey water footprint of crops and derived crop products. Hydrol Earth Syst Sci. 2011;15:1577–600.

    Article  Google Scholar 

  • Menetrez MY. An overview of algae biofuel production potential and environmental impact. Environ Sci Technol. 2012;46:7073–85.

    Article  Google Scholar 

  • Mengistu MG, Steyn JM, Kunz RP, Doidge I, Hlophe HB, et al. A preliminary investigation of the water use efficiency of sweet sorghum for biofuel in South Africa. Water SA. 2016;42.

    Google Scholar 

  • Moreira JR. Water use and impacts due ethanol production in Brazil. International conference on linkages in energy and water use in agriculture in developing countries. Organized by IWMI and FAO, ICRISAT, India, January 2007. http://www.iwmi.cgiar.org/EWMA/files/papers/Jose_Moreira.pdf.

  • Morrison J, Schulte P, Schenck R. Corporate water accounting, methods and tools for measuring water use and its impacts. United Nations Environment Programme: United Nations Global Compact, Pacific Institute; 2010.

    Google Scholar 

  • Nilsalab P, Gheewala SH, Mungkung R, Perret SR, Silalertruksa T, Bonnet S. Water demand and stress from oil palm-based biodiesel production in Thailand. Int J Life Cycle Ass. 2016;1–12.

    Google Scholar 

  • Oerke EC, Dehne HW. Safeguarding production-losses in major crops and the role of crop protection. Crop Protect. 2004;23:275–85.

    Article  Google Scholar 

  • Okadera T, Chontanawat J. Water for bio-energy in Thailand. AS. 2010;44:673–9.

    Google Scholar 

  • Orskov ER, Anchang KY, Subedi M, Smith J. Overview of holistic application of biogas for small scale farmers in Sub-Saharan Africa. Biomass Bioenerg. 2014;70:4–16.

    Article  Google Scholar 

  • Ozkan A, Kinney K, Katz L, Berberoglu H. Reduction of water and energy requirement of algae cultivation using an algae biofilm photobioreactor. Bioresource Technol. 2012;114:542–8.

    Article  Google Scholar 

  • Pacetti T, Lombardi L, Federici G. Water-energy nexus: a case of biogas production from energy crops evaluated by water footprint and LCA methods. J Clean Prod. 2015.

    Google Scholar 

  • Pimentel D, Marklein A, Toth MA, Karpoff M, Paul GS, et al. Biofuel impacts on world food supply: use of fossil fuel, land and water resources. Energies. 2008;1:41–78.

    Article  Google Scholar 

  • Quadrelli R, Peterson S. The energy–climate challenge: recent trends in CO2 emissions from fuel combustion. Energ Policy. 2007;35:5938–52.

    Article  Google Scholar 

  • Quinn JC. Analysis of water footprint of a photobioreactor microalgae biofuel 1 production system from blue, green and lifecycle perspectives. Mechanical and Aerospace Engineering Faculty Publications. 2013; Paper 32. http://digitalcommons.usu.edu/mae_facpub/32.

  • Quinn J, de Winter L, Bradley T. Microalgae bulk growth model with application to industrial scale systems. Bioresour Technol. 2011;102:5083–92.

    Article  Google Scholar 

  • Rasi S, Läntelä J, Rintala J. Trace compounds affecting biogas energy utilisation–a review. Energy Convers Manage. 2011;52:3369–75.

    Article  Google Scholar 

  • Rother L. With big boost from Sugar Cane, Brazil is satisfying its fuel needs. The New York Times. 10-Apr-2006, natl. ed. http://www.nytimes.com/2006/04/10/world/americas/10brazil.html?_r=1&scp=1&sq=&st=nyt&oref=slogin.

  • Rouse MJ. Water worldwide-drinking water quality regulation: where are we in a continuing evolution? J Am Water Works Ass. 2016;108:20–4.

    Article  Google Scholar 

  • Sanderson MA, Adler PR. Perennial forages as second generation bioenergy crops. Int J Mol Sci. 2008;9:768–88.

    Article  Google Scholar 

  • Schill SR. 2008. Sizing up the soybean market. http://wwwbiodieselmagazine.com/articles/2973/sizing-up-the-soybean-market/.

  • Schoneveld GC, German LA, Nutakor E. Land-based investments for rural development? A grounded analysis of the local impacts of biofuel feedstock plantations in Ghana. Ecol Soc. 2011;16:10.

    Article  Google Scholar 

  • Schoo B, Wittich KP, Böttcher U, Kage H, Schittenhelm S. Drought tolerance and water-use efficiency of biogas crops: a comparison of cup plant, maize and lucerne-grass. J Agron Crop Sci. 2017;203:117–30.

    Article  Google Scholar 

  • Silalertruksa T, Gheewala SH. Long-term bioethanol system and its implications on GHG emissions: a case study of Thailand. Environ Sci Technol 2011;45:4920–8.

    Google Scholar 

  • Silalertruksa T, Gheewala SH. Food, fuel, and climate change: is palm-based biodiesel a sustainable option for Thailand? J Ind Ecol. 2012;16:541–51.

    Article  Google Scholar 

  • Singh A, Nigam PS, Murphy JD. Renewable fuels from algae: an answer to debatable land based fuels. Bioresour Technol. 2011;102:10–6.

    Article  Google Scholar 

  • Slegers PM, Wijffels RH, Van Straten G, Van Boxtel AJ. Design scenarios for flat panel photobioreactors. Appl Energ. 2011;88:3342–53.

    Article  Google Scholar 

  • Sontheimer A. Alternativen lassen hoffen. J Biogas. 2007;3:42–5.

    Google Scholar 

  • Stillwell AS, Hoppock DC, Webber ME. Energy recovery from wastewater treatment plants in the United States: a case study of the energy-water nexus. Sustainability. 2010;2:945–62.

    Article  Google Scholar 

  • Stone KC, Hunt PG, Cantrell KB, Ro KS. The potential impacts of biomass feedstock production on water resource availability. Biores Technol. 2010;101:2014–25.

    Article  Google Scholar 

  • Stromberg P, Gasparatos A. Biofuels at the confluence of energy security, rural development, and food security: a developing country perspective. In: Gasparatos A, Stromberg P, editors. Socioeconomic and environmental impacts of biofuels. N. Y.: Cambridge Univ. Press; 2012. PP. 3–26.

    Google Scholar 

  • Suksri P, Moriizumi Y, Hondo H, Yoko W. An introduction of bio-ethanol to thai economy (II)–a survey on sugarcane and cassava processing factories. PhD diss., School of Business and Commerce, Keio University, 2007; Silalertruksa T, Gheewala SH. Environmental sustainability assessment of bio-ethanol production in Thailand. Energy. 2009;34(11):1933–46.

    Google Scholar 

  • Trostle R. Global agricultural supply and demand: factors contributing to the recent increase in food commodity prices. Washington, DC. US Dept. of Agriculture, Economic Research Service, publication WRS-0801, 30pp. 2008.

    Google Scholar 

  • Tu Q, Lu M, Yang YJ, Scott D. Water consumption estimates of the biodiesel process in the US. Clean Technol Environ Policy. 2016;18:507–16.

    Article  Google Scholar 

  • Ugwu CU, Aoyagi H, Uchiyama H. Photobioreactors for mass cultivation of algae. Bioresour Technol. 2008;99:4021–8.

    Article  Google Scholar 

  • UNEP. Towards sustainable production and use of resources: assessing biofuels. Paris, France: United Nations Environment Programme; 2009.

    Google Scholar 

  • US-DOE. Theoretical ethanol yield calculator. 2008. http://www1.eere.energygov/biomass/ethanol_yield_calculator.html.

  • Vasudevan V, Stratton RW, Pearlson MN, Jersey GR, Beyene AG, Weissman JC, et al. Environmental performance of algal biofuel technology options. Environ Sci Technol. 2012;46:2451–9.

    Article  Google Scholar 

  • Wang W. Cassava production for industrial utilization in China—present and future perspectives [Online]. 2002. http://www.ciat.cgiar.org/asia_cassava/pdf/proceedings_workshop_02/33.pdf.

  • Wilhelm WW, Johnson JMF, Hatfield JL, Voorhees WB, Linden DR. Crop and soil productivity response to corn residue removal: a literature review. Agron J. 2004;96:1–17.

    Article  Google Scholar 

  • Xu L, Brilman DW, Withag JA, Brem G, Kersten S. Assessment of a dry and a wet route for the production of biofuels from microalgae: energy balance analysis. Bioresour Technol. 2011;102:113–22.

    Google Scholar 

  • Yue D, You F, Snyder SW. Biomass-to-bioenergy and biofuel supply chain optimization: overview, key issues and challenges. Comput Chem Eng. 2014;66:36–56.

    Article  Google Scholar 

  • Ziska LH, Runion GB, Tomecek M, Prior SA, Torbet HA, Sicher R. An evaluation of cassava, sweet potato and field corn as potential carbohydrate sources for bioethanol production in Alabama and Maryland. Biomass Bioenerg. 2009;33:1503–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Arshad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arshad, M., Abbas, M. (2018). Water Sustainability Issues in Biofuel Production. In: Arshad, M. (eds) Perspectives on Water Usage for Biofuels Production. Springer, Cham. https://doi.org/10.1007/978-3-319-66408-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66408-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66407-1

  • Online ISBN: 978-3-319-66408-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics