Advertisement

Matching Lexicographic and Conjugation Orders on the Conjugation Class of a Special Sturmian Morphism

  • David ClampittEmail author
  • Thomas Noll
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10432)

Abstract

The conjugation class of a special Sturmian morphism carries a natural linear order by virtue of the two elementary conjugations \(conj_a\) and \(conj_b\) with the single letters a and b, with the standard morphism of the class as the smallest element in this order. We show that a lexicographic order on the morphisms of the given conjugation class can be defined that matches the conjugation order.

Keywords

Sturmian morphisms Sturmian involution Christoffel words Standard words and their conjugates 

References

  1. 1.
    Berstel, J., Lauve, A., Reutenauer, C., Saliola, F.V.: Combinatorics on words: Christoffel Words and Repetitions in Words. CRM Monograph Series, vol. 27. American Mathematical Society, Providence, RI (2009)Google Scholar
  2. 2.
    Berthé, V., de Luca, A., Reutenauer, C.: On an involution of Christoffel words and Sturmian morphisms. European J. Combin. 29(2), 535–553 (2008). http://dx.doi.org/10.1016/j.ejc.2007.03.001 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Clampitt, D.: Lexicographic orderings of modes and morphisms. In: Pareyón, G., Pina-Romero, S., Agustín-Aquino, O.A., Emilio, L.P. (eds.) The Musical-Mathematical Mind: Patterns and Transformations. Computational Music Science, pp. 91–99. Springer, Berlin (2017). https://books.google.ca/books?id=9kAavgAACAAJ Google Scholar
  4. 4.
    Kassel, C., Reutenauer, C.: Sturmian morphisms, the braid group \(B_4\), Christoffel words and bases of \(F_2\). Ann. Mat. Pura Appl. 186(2), 317–339 (2007). http://dx.doi.org/10.1007/s10231-006-0008-z MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Mantaci, S., Restivo, A., Sciortino, M.: Burrows-Wheeler transform and Sturmian words. Inf. Process. Lett. 86(5), 241–246 (2003). http://dx.doi.org/10.1016/S0020-0190(02)00512-4 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Séébold, P.: On the conjugation of standard morphisms. Theoret. Comput. Sci. 195(1), 91–109 (1998). http://dx.doi.org/10.1016/S0304-3975(97)00159-X. Mathematical foundations of computer science (Cracow, 1996)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.The Ohio State UniversityColumbusUSA
  2. 2.Escola Superior de Música de CatalunyaBarcelonaSpain

Personalised recommendations