Advertisement

Variants Around the Bresenham Method

  • J. -P. BorelEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10432)

Abstract

We present various ways of representing a segment in blacking or not some pixels on a computer screen. These methods include well-known classical cases, such as the one proposed by Bresenham, or the concept of Cutting Sequence. Our method relies on the concept of active multi-pixel. The sequence of pixels in black or in various levels of gray is coded on some alphabet, which depends on the multi-pixel, and the structure of these encodings is discussed.

Keywords

Discrete geometry Freeman codes Bresenham method 

References

  1. 1.
    Allouche, J.P., Shallit, J.: Automatic Sequences: Theory and Applications. Cambridge University Press, Cambridge (2003)Google Scholar
  2. 2.
    Berstel, J., Seébold, P.: Sturmian words. In: Lothaire, M. (ed.) Algebraic Combinatorics on Words. Cambridge University Press, Cambridge (2002)Google Scholar
  3. 3.
    Borel, J.P.: How to build Billiard words using decimations. RAIRO-Inf. Theor. Appl. 44(1), 59–77 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Borel, J.P.: Various Methods for drawing Digitized Lines (2016)Google Scholar
  5. 5.
    Borel, J.P., Reutenauer, C.: Palindromic factors of Billiard words. Theoret. Comput. Sci. 340(2), 334–348 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Borel, J.P., Reutenauer, C.: On Christoffel classes. RAIRO-Inf. Theor. Appl. 40, 15–27 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bresenham, J.E.: Algorithm for computer control of a digital plotter. IBM Syst. J. 4(1), 25–30 (1965)CrossRefGoogle Scholar
  8. 8.
    Crisp, D., Moran, W., Pollington, A., Shive, P.: Substitution invariant cutting sequences. J. Théorie des Nombres Bordeaux 5, 123–137 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Freeman, H.: On the encoding of arbitrary geometric configuration. IRE Trans. Electron. Comput. 10, 260–268 (1961)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Justin, J., Pirillo, G.: Decimations and Sturmian words. Theor. Inform. Appl. 31, 271–290 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Keane, M.: Intervalle exchange transformations. Math. Z. 141, 25–31 (1975)Google Scholar
  12. 12.
    Koplowitz, J.: On the performance of chain codes for quantization of line drawings. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-3, 357–393 (1981)Google Scholar
  13. 13.
    Mantaci, S., Restivo, A., Sciortino, M.: Burrows-Wheeler transform and Sturmian words. Inform. Proc. Lett. 86, 241–246 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Rauzy, G.: Echanges d’intervalles et transformations induites. Acta Arith. 34, 315–328 (1979)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Reveilles, J.P.: Géométrie discrète, calcul en nombres entiers et algorithmique. Ph.D. thesis, University Louis Pasteur - Strasbourg, France (1991)Google Scholar
  16. 16.
    Rosenfeld, A.: Digital straight line segments. IEEE Trans. Comput. 32(12), 1264–1269 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Series, C.: The geometry of Markoff numbers. Math. Intell. 7, 20–29 (1985)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.XLim, UMR 6172 - Université de Limoges - CNRSLimoges CedexFrance

Personalised recommendations