Post Sharing-Based Credibility Network for Social Network

  • V. Carchiolo
  • A. Longheu
  • M. Malgeri
  • G. Mangioni
  • M. Previti
Part of the Studies in Computational Intelligence book series (SCI, volume 737)


Social networks are intensively and extensively used to exchange news and contents in real time. The lack of a global authority for assessing posts truthfulness however allows malicious to exhibit unfair behaviours; identifying methodologies to detect hoaxes and defamatory content automatically is therefore more and more required. Social networks as Facebook and Twitter provided specific solutions and general approaches were also developed; in this paper we present a general model that takes into account both post as well as users’ credibility, using a duplex network of acquaintances and credibility among users. First experiments show that it is possible to distinguish individuals who post non-truthful content through a combined analysis of both the news content and the reposts they get from their contacts.


Credibility Social network Social contagion 


  1. 1.
    Peysakhovich, H.: News feed FYI: Further reducing clickbait in feed. Accessed Mar 2017
  2. 2.
    Jeyaraman: Fighting spam with botmaker. Accessed Mar 2017
  3. 3.
    Jin, Z., Cao, J., Jiang, Y.G., Zhang, Y.: News credibility evaluation on microblog with a hierarchical propagation model. In: 2014 IEEE International Conference on Data Mining (ICDM), pp. 230–239. IEEE (2014)Google Scholar
  4. 4.
    Kwon, S., Cha, M.: Modeling bursty temporal pattern of rumors. In: ICWSM. (2014)Google Scholar
  5. 5.
    Kwon, S., Cha, M., Jung, K., Chen, W., Wang, Y.: Prominent features of rumor propagation in online social media. In: 2013 IEEE 13th International Conference on Data Mining (ICDM), pp. 1103–1108. IEEE (2013)Google Scholar
  6. 6.
    Ma, J., Gao, W., Wei, Z., Lu, Y., Wong, K.F.: Detect rumors using time series of social context information on microblogging websites. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 1751–1754. ACM (2015)Google Scholar
  7. 7.
    Zhao, Z., Resnick, P., Mei, Q.: Enquiring minds: Early detection of rumors in social media from enquiry posts. In: Proceedings of the 24th International Conference on World Wide Web, pp. 1395–1405. ACM (2015)Google Scholar
  8. 8.
    Egele, M., Stringhini, G., Kruegel, C., Vigna, G.: Compa: Detecting compromised accounts on social networks. In: NDSS (2013)Google Scholar
  9. 9.
    Martinez-Romo, J., Araujo, L.: Detecting malicious tweets in trending topics using a statistical analysis of language. Expert Syst. Appl. 40(8), 2992–3000 (2013)CrossRefGoogle Scholar
  10. 10.
    Wang, A.H.: Don’t follow me: spam detection in twitter. In: Proceedings of the 2010 International Conference on Security and Cryptography (SECRYPT), pp. 1–10. IEEE (2010)Google Scholar
  11. 11.
    O’Callaghan, D., Harrigan, M., Carthy, J., Cunningham, P.: Identifying discriminating network motifs in youtube spam (2012). arXiv preprint arXiv:1202.5216
  12. 12.
    Carchiolo, V., Longheu, A., Malgeri, M., Mangioni, G.: Users’ attachment in trust networks: reputation vs. effort. IJBIC 5(4), 199–209 (2013)Google Scholar
  13. 13.
    Carchiolo, V., Longheu, A., Malgeri, M., Mangioni, G.: Trust assessment: a personalized, distributed, and secure approach. Concurr. Comput. Pract. Exp. 24(6), 605–617 (2012)CrossRefMATHGoogle Scholar
  14. 14.
    Carchiolo, V., Longheu, A., Malgeri, M., Mangioni, G.: Trusting evaluation by social reputation. In Badica, C., Mangioni, G., Carchiolo, V., Burdescu, D.D. (eds.): IDC II—Proceedings of the 2th IDC, 2008, Catania, Italy, 2008. vol. 162 of Studies in Computational Intelligence, pp. 75–84. Springer (2008)Google Scholar
  15. 15.
    Carchiolo, V., Longheu, A., Malgeri, M., Mangioni, G.: Gain the best reputation in trust networks. In: IDC V—Proceedings of the 5th IDC 2011, Delft, The Netherlands, pp. 213–218 (2011)Google Scholar
  16. 16.
    Criado, R., Flores, J., García del Amo, A., Gómez-Gardeñes, J., Romance, M.: A mathematical model for networks with structures in the mesoscale. Int. J. Comput. Math. 89(3), 291–309 (2012)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • V. Carchiolo
    • 1
  • A. Longheu
    • 1
  • M. Malgeri
    • 1
  • G. Mangioni
    • 1
  • M. Previti
    • 1
  1. 1.Dipartimento di Ingegneria Elettrica, Elettronica e Informatica (DIEEI)Università degli Studi di CataniaCataniaItaly

Personalised recommendations