Skip to main content

Chlamydomonas: Regulation Toward Metal Deficiencies

  • Chapter
  • First Online:
Chlamydomonas: Molecular Genetics and Physiology

Part of the book series: Microbiology Monographs ((MICROMONO,volume 30))

Abstract

The green alga, Chlamydomonas reinhardtii, is an ideal organism to study cellular responses related to metal deficiencies. The biology of C. reinhardtii is relevant to both animals and photosynthetic organisms, since many genes are derived from the common plant–animal ancestor. By studying C. reinhardtii, important questions in trace metal homeostasis have been answered; however, many aspects remain to be discovered. To cope with the effects of metal deficiencies or excess, C. reinhardtii has developed mechanisms to tightly regulate metal homeostasis. Here we describe the C. reinhardtii requirements for trace metals, the intracellular distribution of these micronutrients, and their assimilation mechanisms. We further discuss the impact of trace metals deficiencies on the metabolism and how the regulation is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abdel-Ghany SE, Muller-Moule P, Niyogi KK, Pilon M, Shikanai T (2005) Two P-type ATPases are required for copper delivery in Arabidopsis thaliana chloroplasts. Plant Cell 17(4):1233–1251. doi:10.1105/tpc.104.030452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen MD, del Campo JA, Kropat J, Merchant SS (2007a) FEA1, FEA2, and FRE1, encoding two homologous secreted proteins and a candidate ferrireductase, are expressed coordinately with FOX1 and FTR1 in iron-deficient Chlamydomonas reinhardtii. Eukaryot Cell 6(10):1841–1852. doi:10.1128/EC.00205-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen MD, Kropat J, Tottey S, Del Campo JA, Merchant SS (2007b) Manganese deficiency in Chlamydomonas results in loss of photosystem II and MnSOD function, sensitivity to peroxides, and secondary phosphorus and iron deficiency. Plant Physiol 143(1):263–277. doi:10.1104/pp.106.088609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen MD, Kropat J, Merchant SS (2008) Regulation and localization of isoforms of the aerobic oxidative cyclase in Chlamydomonas reinhardtii. Photochem Photobiol 84(6):1336–1342. doi:10.1111/j.1751-1097.2008.00440.x

    Article  CAS  PubMed  Google Scholar 

  • Allmer J, Naumann B, Markert C, Zhang M, Hippler M (2006) Mass spectrometric genomic data mining: novel insights into bioenergetic pathways in Chlamydomonas reinhardtii. Proteomics 6(23):6207–6220

    Article  CAS  PubMed  Google Scholar 

  • Andreini C, Banci L, Bertini I, Rosato A (2006) Zinc through the three domains of life. J Proteome Res 5(11):3173–3178. doi:10.1021/pr0603699

    Article  CAS  PubMed  Google Scholar 

  • Andrews NC (2000) Iron homeostasis: insights from genetics and animal models. Nat Rev Genet 1(3):208–217

    Article  CAS  PubMed  Google Scholar 

  • Atteia A, Adrait A, Brugiere S, Tardif M, van Lis R, Deusch O, Dagan T, Kuhn L, Gontero B, Martin W, Garin J, Joyard J, Rolland N (2009) A proteomic survey of Chlamydomonas reinhardtii mitochondria sheds new light on the metabolic plasticity of the organelle and on the nature of the alpha-proteobacterial mitochondrial ancestor. Mol Biol Evol 26(7):1533–1548

    Article  CAS  PubMed  Google Scholar 

  • Bashir K, Ishimaru Y, Nishizawa NK (2011a) Identification and characterization of the major mitochondrial Fe transporter in rice. Plant Signal Behav 6(10):1591–1593. doi:10.4161/psb.6.10.17132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bashir K, Ishimaru Y, Shimo H, Nagasaka S, Fujimoto M, Takanashi H, Tsutsumi N, An G, Nakanishi H, Nishizawa NK (2011b) The rice mitochondrial iron transporter is essential for plant growth. Nat Commun 2:322. doi:10.1038/ncomms1326

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bauer P, Ling HQ, Guerinot ML (2007) FIT, the FER-like iron deficiency induced transcription factor in Arabidopsis. Plant Physiol Biochem 45(5):260–261

    Article  CAS  PubMed  Google Scholar 

  • Blaby-Haas CE, Merchant SS (2012) The ins and outs of algal metal transport. Biochim Biophys Acta 1823(9):1531–1552. doi:10.1016/j.bbamcr.2012.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blaby-Haas CE, Merchant SS (2014) Lysosome-related organelles as mediators of metal homeostasis. J Biol Chem 289(41):28129–28136. doi:10.1074/jbc.R114.592618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blaby-Haas CE, Padilla-Benavides T, Stube R, Arguello JM, Merchant SS (2014) Evolution of a plant-specific copper chaperone family for chloroplast copper homeostasis. Proc Natl Acad Sci U S A 111(50):E5480–E5487. doi:10.1073/pnas.1421545111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blaby-Haas CE, Castruita M, Fitz-Gibbon ST, Kropat J, Merchant SS (2016) Ni induces the CRR1-dependent regulon revealing overlap and distinction between hypoxia and Cu deficiency responses in Chlamydomonas reinhardtii. Metallomics. doi:10.1039/c6mt00063k

  • Brumbarova T, Matros A, Mock HP, Bauer P (2008) A proteomic study showing differential regulation of stress, redox regulation and peroxidase proteins by iron supply and the transcription factor FER. Plant J 54(2):321–334

    Article  CAS  PubMed  Google Scholar 

  • Brumbarova T, Bauer P, Ivanov R (2015) Molecular mechanisms governing Arabidopsis iron uptake. Trends Plant Sci 20(2):124–133. doi:10.1016/j.tplants.2014.11.004

    Article  CAS  PubMed  Google Scholar 

  • Buchanan-Wollaston V, Ainsworth C (1997) Leaf senescence in Brassica napus: cloning of senescence related genes by subtractive hybridisation. Plant Mol Biol 33(5):821–834

    Article  CAS  PubMed  Google Scholar 

  • Buckhout TJ, Yang TJ, Schmidt W (2009) Early iron-deficiency-induced transcriptional changes in Arabidopsis roots as revealed by microarray analyses. BMC Genomics 10:147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Busch A, Rimbauld B, Naumann B, Rensch S, Hippler M (2008) Ferritin is required for rapid remodeling of the photosynthetic apparatus and minimizes photo-oxidative stress in response to iron availability in Chlamydomonas reinhardtii. Plant J 55(2):201–211. doi:10.1111/j.1365-313X.2008.03490.x

    Article  CAS  PubMed  Google Scholar 

  • Cailliatte R, Schikora A, Briat JF, Mari S, Curie C (2010) High-affinity manganese uptake by the metal transporter NRAMP1 is essential for Arabidopsis growth in low manganese conditions. Plant Cell 22(3):904–917. doi:10.1105/tpc.109.073023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castruita M, Casero D, Karpowicz SJ, Kropat J, Vieler A, Hsieh SI, Yan W, Cokus S, Loo JA, Benning C, Pellegrini M, Merchant SS (2011) Systems biology approach in Chlamydomonas reveals connections between copper nutrition and multiple metabolic steps. Plant Cell 23(4):1273–1292. doi:10.1105/tpc.111.084400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chasteen ND (1998) Ferritin. Uptake, storage, and release of iron. Met Ions Biol Syst 35:479–514

    CAS  PubMed  Google Scholar 

  • Chen YH, Wu XM, Ling HQ, Yang WC (2006) Transgenic expression of DwMYB2 impairs iron transport from root to shoot in Arabidopsis thaliana. Cell Res 16(10):830–840

    Article  CAS  PubMed  Google Scholar 

  • Chen JC, Hsieh SI, Kropat J, Merchant SS (2008) A ferroxidase encoded by FOX1 contributes to iron assimilation under conditions of poor iron nutrition in Chlamydomonas. Eukaryot Cell 7(3):541–545. doi:10.1128/EC.00463-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cobine PA, Pierrel F, Winge DR (2006) Copper trafficking to the mitochondrion and assembly of copper metalloenzymes. Biochim Biophys Acta 1763(7):759–772. doi:10.1016/j.bbamcr.2006.03.002

    Article  CAS  PubMed  Google Scholar 

  • Colangelo EP, Guerinot ML (2004) The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response. Plant Cell 16(12):3400–3412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connolly EL, Fett JP, Guerinot ML (2002) Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14(6):1347–1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conte S, Stevenson D, Furner I, Lloyd A (2009) Multiple antibiotic resistance in Arabidopsis is conferred by mutations in a chloroplast-localized transport protein. Plant Physiol 151(2):559–573. doi:10.1104/pp.109.143487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Courville P, Chaloupka R, Cellier MF (2006) Recent progress in structure-function analyses of Nramp proton-dependent metal-ion transporters. Biochem Cell Biol 84(6):960–978

    Article  CAS  PubMed  Google Scholar 

  • Curie C, Alonso JM, Le Jean M, Ecker JR, Briat JF (2000) Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. Biochem J 347(Pt 3):749–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curie C, Cassin G, Couch D, Divol F, Higuchi K, Le Jean M, Misson J, Schikora A, Czernic P, Mari S (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann Bot 103(1):1–11. doi:10.1093/aob/mcn207

    Article  CAS  PubMed  Google Scholar 

  • Deng X, Eriksson M (2007) Two iron-responsive promoter elements control expression of FOX1 in Chlamydomonas reinhardtii. Eukaryot Cell 6(11):2163–2167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinneny JR, Long TA, Wang JY, Jung JW, Mace D, Pointer S, Barron C, Brady SM, Schiefelbein J, Benfey PN (2008) Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science 320(5878):942–945

    Article  CAS  PubMed  Google Scholar 

  • Ehrensberger KM, Bird AJ (2011) Hammering out details: regulating metal levels in eukaryotes. Trends Biochem Sci 36(10):524–531. doi:10.1016/j.tibs.2011.07.002

    Article  CAS  PubMed  Google Scholar 

  • Eide DJ (2009) Homeostatic and adaptive responses to zinc deficiency in Saccharomyces cerevisiae. J Biol Chem 284(28):18565–18569. doi:10.1074/jbc.R900014200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eriksson M, Moseley JL, Tottey S, Del Campo JA, Quinn J, Kim Y, Merchant S (2004) Genetic dissection of nutritional copper signaling in chlamydomonas distinguishes regulatory and target genes. Genetics 168(2):795–807. doi:10.1534/genetics.104.030460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fei X, Deng X (2007) A novel Fe deficiency-responsive element (FeRE) regulates the expression of atx1 in Chlamydomonas reinharditii. Plant Cell Physiol 48(10):1496–1503

    Article  CAS  PubMed  Google Scholar 

  • Fei X, Eriksson M, Yang J, Deng X (2009) An Fe deficiency responsive element with a core sequence of TGGCA regulates the expression of FEA1 in Chlamydomonas reinhardtii. J Biochem 146(2):157–166

    Article  CAS  PubMed  Google Scholar 

  • Fei X, Eriksson M, Li Y, Deng X (2010) A novel negative Fe-deficiency-responsive element and a TGGCA-type-like FeRE control the expression of FTR1 in Chlamydomonas reinhardtii. J Biomed Biotechnol 2010:790247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fleming PJ, Kent UM (1991) Cytochrome b 561, ascorbic acid, and transmembrane electron transfer. Am J Clin Nutr 54(6 Suppl):1173S–1178S

    CAS  PubMed  Google Scholar 

  • Fleming MD, Trenor CC III, Su MA, Foernzler D, Beier DR, Dietrich WF, Andrews NC (1997) Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene. Nat Genet 16(4):383–386

    Article  CAS  PubMed  Google Scholar 

  • Froschauer EM, Schweyen RJ, Wiesenberger G (2009) The yeast mitochondrial carrier proteins Mrs3p/Mrs4p mediate iron transport across the inner mitochondrial membrane. Biochim Biophys Acta 1788(5):1044–1050. doi:10.1016/j.bbamem.2009.03.004

    Article  CAS  PubMed  Google Scholar 

  • Hanikenne M, Merchant SS, Hamel PP (2008) Transition metal nutrition: a balance between deficiency and toxicity. The Chlamydomonas sourcebook, vol 2, 2nd edn. Academic, San Diego

    Google Scholar 

  • Harris EH (2009) The Chlamydomonas sourcebook, 2nd edn. Academic, San Diego

    Google Scholar 

  • Harrison PM, Arosio P (1996) The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta 1275(3):161–203

    Article  PubMed  Google Scholar 

  • Hemschemeier A, Casero D, Liu B, Benning C, Pellegrini M, Happe T, Merchant SS (2013) Copper response regulator1-dependent and -independent responses of the Chlamydomonas reinhardtii transcriptome to dark anoxia. Plant Cell 25(9):3186–3211. doi:10.1105/tpc.113.115741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hippler M, Drepper F, Farah J, Rochaix JD (1997) Fast electron transfer from cytochrome c6 and plastocyanin to photosystem I of Chlamydomonas reinhardtii requires PsaF. Biochemistry 36(21):6343–6349. doi:10.1021/bi970082c

    Article  CAS  PubMed  Google Scholar 

  • Hohner R, Barth J, Magneschi L, Jaeger D, Niehues A, Bald T, Grossman A, Fufezan C, Hippler M (2013) The metabolic status drives acclimation of iron deficiency responses in Chlamydomonas reinhardtii as revealed by proteomics based hierarchical clustering and reverse genetics. Mol Cell Proteomics 12(10):2774–2790. doi:10.1074/mcp.M113.029991

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hong-Hermesdorf A, Miethke M, Gallaher SD, Kropat J, Dodani SC, Chan J, Barupala D, Domaille DW, Shirasaki DI, Loo JA, Weber PK, Pett-Ridge J, Stemmler TL, Chang CJ, Merchant SS (2014) Subcellular metal imaging identifies dynamic sites of Cu accumulation in Chlamydomonas. Nat Chem Biol 10(12):1034–1042. doi:10.1038/nchembio.1662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh SI, Castruita M, Malasarn D, Urzica E, Erde J, Page MD, Yamasaki H, Casero D, Pellegrini M, Merchant SS, Loo JA (2013) The proteome of copper, iron, zinc, and manganese micronutrient deficiency in Chlamydomonas reinhardtii. Mol Cell Proteomics 12(1):65–86. doi:10.1074/mcp.M112.021840

    Article  PubMed  CAS  Google Scholar 

  • Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Wada Y, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2006) Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. Plant J 45(3):335–346. doi:10.1111/j.1365-313X.2005.02624.x

    Article  CAS  PubMed  Google Scholar 

  • Jakoby M, Wang HY, Reidt W, Weisshaar B, Bauer P (2004) FRU (BHLH029) is required for induction of iron mobilization genes in Arabidopsis thaliana. FEBS Lett 577(3):528–534

    Article  CAS  PubMed  Google Scholar 

  • Jeong J, Guerinot ML (2009) Homing in on iron homeostasis in plants. Trends Plant Sci 14(5):280–285. doi:10.1016/j.tplants.2009.02.006

    Article  CAS  PubMed  Google Scholar 

  • Jeong J, Cohu C, Kerkeb L, Pilon M, Connolly EL, Guerinot ML (2008) Chloroplast Fe(III) chelate reductase activity is essential for seedling viability under iron limiting conditions. Proc Natl Acad Sci U S A 105(30):10619–10624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SA, Punshon T, Lanzirotti A, Li L, Alonso JM, Ecker JR, Kaplan J, Guerinot ML (2006) Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1. Science 314(5803):1295–1298

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Nagasaka S, Senoura T, Itai RN, Nakanishi H, Nishizawa NK (2013) Iron-binding haemerythrin RING ubiquitin ligases regulate plant iron responses and accumulation. Nat Commun 4:2792. doi:10.1038/ncomms3792

    PubMed  PubMed Central  Google Scholar 

  • Kong WW, Yang ZM (2010) Identification of iron-deficiency responsive microRNA genes and cis-elements in Arabidopsis. Plant Physiol Biochem 48(2-3):153–159. doi:10.1016/j.plaphy.2009.12.008

    Article  CAS  PubMed  Google Scholar 

  • Koorts AM, Viljoen M (2007) Ferritin and ferritin isoforms I: structure-function relationships, synthesis, degradation and secretion. Arch Physiol Biochem 113(1):30–54. doi:10.1080/13813450701318583

    Article  CAS  PubMed  Google Scholar 

  • Kosman DJ (2003) Molecular mechanisms of iron uptake in fungi. Mol Microbiol 47(5):1185–1197

    Article  CAS  PubMed  Google Scholar 

  • Kropat J, Tottey S, Birkenbihl RP, Depege N, Huijser P, Merchant S (2005) A regulator of nutritional copper signaling in Chlamydomonas is an SBP domain protein that recognizes the GTAC core of copper response element. Proc Natl Acad Sci U S A 102(51):18730–18735. doi:10.1073/pnas.0507693102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • La Fontaine S, Quinn JM, Nakamoto SS, Page MD, Gohre V, Moseley JL, Kropat J, Merchant S (2002) Copper-dependent iron assimilation pathway in the model photosynthetic eukaryote Chlamydomonas reinhardtii. Eukaryot Cell 1(5):736–757

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lanquar V, Lelievre F, Bolte S, Hames C, Alcon C, Neumann D, Vansuyt G, Curie C, Schroder A, Kramer U, Barbier-Brygoo H, Thomine S (2005) Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. EMBO J 24(23):4041–4051. doi:10.1038/sj.emboj.7600864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanquar V, Ramos MS, Lelievre F, Barbier-Brygoo H, Krieger-Liszkay A, Kramer U, Thomine S (2010) Export of vacuolar manganese by AtNRAMP3 and AtNRAMP4 is required for optimal photosynthesis and growth under manganese deficiency. Plant Physiol 152(4):1986–1999. doi:10.1104/pp.109.150946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Prohaska JR, Thiele DJ (2001) Essential role for mammalian copper transporter Ctr1 in copper homeostasis and embryonic development. Proc Natl Acad Sci U S A 98(12):6842–6847. doi:10.1073/pnas.111058698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levi S, Salfeld J, Franceschinelli F, Cozzi A, Dorner MH, Arosio P (1989) Expression and structural and functional properties of human ferritin L-chain from Escherichia coli. Biochemistry 28(12):5179–5184

    Article  CAS  PubMed  Google Scholar 

  • Li L, Chen OS, McVey Ward D, Kaplan J (2001) CCC1 is a transporter that mediates vacuolar iron storage in yeast. J Biol Chem 276(31):29515–29519

    Article  CAS  PubMed  Google Scholar 

  • Li XL, Zhang HM, Ai Q, Liang G, Yu D (2016) Two bHLH transcription factors, bHLH34 and bHLH104, regulate iron homeostasis in Arabidopsis thaliana. Plant Physiol. doi:10.1104/pp.15.01827

  • Ling HQ, Bauer P, Bereczky Z, Keller B, Ganal M (2002) The tomato fer gene encoding a bHLH protein controls iron-uptake responses in roots. Proc Natl Acad Sci U S A 99(21):13938–13943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobréaux S, Briat JF (1991) Ferritin accumulation and degradation in different organs of pea (Pisum sativum) during development. Biochem J 274(Pt 2):601–606

    Article  PubMed  PubMed Central  Google Scholar 

  • Long JC, Merchant SS (2008) Photo-oxidative stress impacts the expression of genes encoding iron metabolism components in Chlamydomonas. Photochem Photobiol 84(6):1395–1403. doi:10.1111/j.1751-1097.2008.00451.x

    Article  CAS  PubMed  Google Scholar 

  • Long JC, Sommer F, Allen MD, Lu SF, Merchant SS (2008) FER1 and FER2 encoding two ferritin complexes in Chlamydomonas reinhardtii chloroplasts are regulated by iron. Genetics 179(1):137–147. doi:10.1534/genetics.107.083824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long TA, Tsukagoshi H, Busch W, Lahner B, Salt DE, Benfey PN (2010) The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots. Plant Cell 22(7):2219–2236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacDiarmid CW, Milanick MA, Eide DJ (2003) Induction of the ZRC1 metal tolerance gene in zinc-limited yeast confers resistance to zinc shock. J Biol Chem 278(17):15065–15072

    Article  CAS  PubMed  Google Scholar 

  • Malasarn D, Kropat J, Hsieh SI, Finazzi G, Casero D, Loo JA, Pellegrini M, Wollman FA, Merchant SS (2013) Zinc deficiency impacts CO2 assimilation and disrupts copper homeostasis in Chlamydomonas reinhardtii. J Biol Chem 288(15):10672–10683. doi:10.1074/jbc.M113.455105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinoia E, Maeshima M, Neuhaus HE (2007) Vacuolar transporters and their essential role in plant metabolism. J Exp Bot 58(1):83–102. doi:10.1093/jxb/erl183

    Article  CAS  PubMed  Google Scholar 

  • Martinoia E, Meyer S, De Angeli A, Nagy R (2012) Vacuolar transporters in their physiological context. Annu Rev Plant Biol 63:183–213. doi:10.1146/annurev-arplant-042811-105608

    Article  CAS  PubMed  Google Scholar 

  • McKie AT (2008) The role of Dcytb in iron metabolism: an update. Biochem Soc Trans 36(Pt 6):1239–1241

    Article  CAS  PubMed  Google Scholar 

  • McKie AT, Barrow D, Latunde-Dada GO, Rolfs A, Sager G, Mudaly E, Mudaly M, Richardson C, Barlow D, Bomford A, Peters TJ, Raja KB, Shirali S, Hediger MA, Farzaneh F, Simpson RJ (2001) An iron-regulated ferric reductase associated with the absorption of dietary iron. Science 291(5509):1755–1759

    Article  CAS  PubMed  Google Scholar 

  • Meiser J, Lingam S, Bauer P (2011) Posttranslational regulation of the iron deficiency basic helix-loop-helix transcription factor FIT is affected by iron and nitric oxide. Plant Physiol 157(4):2154–2166. doi:10.1104/pp.111.183285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merchant S, Bogorad L (1986a) Rapid degradation of apoplastocyanin in Cu(II)-deficient cells of Chlamydomonas reinhardtii. J Biol Chem 261(34):15850–15853

    CAS  PubMed  Google Scholar 

  • Merchant S, Bogorad L (1986b) Regulation by copper of the expression of plastocyanin and cytochrome c552 in Chlamydomonas reinhardtii. Mol Cell Biol 6(2):462–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merchant S, Sawaya MR (2005) The light reactions: a guide to recent acquisitions for the picture gallery. Plant Cell 17(3):648–663. doi:10.1105/tpc.105.030676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merchant SS, Allen MD, Kropat J, Moseley JL, Long JC, Tottey S, Terauchi AM (2006) Between a rock and a hard place: trace element nutrition in Chlamydomonas. Biochim Biophys Acta 1763(7):578–594. doi:10.1016/j.bbamcr.2006.04.007

    Article  CAS  PubMed  Google Scholar 

  • Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Marechal-Drouard L, Marshall WF, Qu LH, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Cardol P, Cerutti H, Chanfreau G, Chen CL, Cognat V, Croft MT, Dent R, Dutcher S, Fernandez E, Fukuzawa H, Gonzalez-Ballester D, Gonzalez-Halphen D, Hallmann A, Hanikenne M, Hippler M, Inwood W, Jabbari K, Kalanon M, Kuras R, Lefebvre PA, Lemaire SD, Lobanov AV, Lohr M, Manuell A, Meier I, Mets L, Mittag M, Mittelmeier T, Moroney JV, Moseley J, Napoli C, Nedelcu AM, Niyogi K, Novoselov SV, Paulsen IT, Pazour G, Purton S, Ral JP, Riano-Pachon DM, Riekhof W, Rymarquis L, Schroda M, Stern D, Umen J, Willows R, Wilson N, Zimmer SL, Allmer J, Balk J, Bisova K, Chen CJ, Elias M, Gendler K, Hauser C, Lamb MR, Ledford H, Long JC, Minagawa J, Page MD, Pan J, Pootakham W, Roje S, Rose A, Stahlberg E, Terauchi AM, Yang P, Ball S, Bowler C, Dieckmann CL, Gladyshev VN, Green P, Jorgensen R, Mayfield S, Mueller-Roeber B, Rajamani S, Sayre RT, Brokstein P, Dubchak I, Goodstein D, Hornick L, Huang YW, Jhaveri J, Luo Y, Martinez D, Ngau WC, Otillar B, Poliakov A, Porter A, Szajkowski L, Werner G, Zhou K, Grigoriev IV, Rokhsar DS, Grossman AR (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318(5848):245–250. doi:10.1126/science.1143609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrissey J, Baxter IR, Lee J, Li L, Lahner B, Grotz N, Kaplan J, Salt DE, Guerinot ML (2009) The ferroportin metal efflux proteins function in iron and cobalt homeostasis in Arabidopsis. Plant Cell 21(10):3326–3338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moseley J, Quinn J, Eriksson M, Merchant S (2000) The Crd1 gene encodes a putative di-iron enzyme required for photosystem I accumulation in copper deficiency and hypoxia in Chlamydomonas reinhardtii. EMBO J 19(10):2139–2151. doi:10.1093/emboj/19.10.2139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moseley JL, Allinger T, Herzog S, Hoerth P, Wehinger E, Merchant S, Hippler M (2002a) Adaptation to Fe-deficiency requires remodeling of the photosynthetic apparatus. EMBO J 21(24):6709–6720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moseley JL, Page MD, Alder NP, Eriksson M, Quinn J, Soto F, Theg SM, Hippler M, Merchant S (2002b) Reciprocal expression of two candidate di-iron enzymes affecting photosystem I and light-harvesting complex accumulation. Plant Cell 14(3):673–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muhlenhoff U, Stadler JA, Richhardt N, Seubert A, Eickhorst T, Schweyen RJ, Lill R, Wiesenberger G (2003) A specific role of the yeast mitochondrial carriers MRS3/4p in mitochondrial iron acquisition under iron-limiting conditions. J Biol Chem 278(42):40612–40620. doi:10.1074/jbc.M307847200

    Article  PubMed  CAS  Google Scholar 

  • Narayanan NN, Ihemere U, Chiu WT, Siritunga D, Rajamani S, Singh S, Oda S, Sayre RT (2011) The iron assimilatory protein, FEA1, from Chlamydomonas reinhardtii facilitates iron-specific metal uptake in yeast and plants. Front Plant Sci 2:67. doi:10.3389/fpls.2011.00067

    Article  PubMed  PubMed Central  Google Scholar 

  • Naumann B, Stauber EJ, Busch A, Sommer F, Hippler M (2005) N-terminal processing of Lhca3 Is a key step in remodeling of the photosystem I-light-harvesting complex under iron deficiency in Chlamydomonas reinhardtii. J Biol Chem 280(21):20431–20441. doi:10.1074/jbc.M414486200

    Article  CAS  PubMed  Google Scholar 

  • Naumann B, Busch A, Allmer J, Ostendorf E, Zeller M, Kirchhoff H, Hippler M (2007) Comparative quantitative proteomics to investigate the remodeling of bioenergetic pathways under iron deficiency in Chlamydomonas reinhardtii. Proteomics 7(21):3964–3979. doi:10.1002/pmic.200700407

    Article  CAS  PubMed  Google Scholar 

  • Nevo Y, Nelson N (2006) The NRAMP family of metal-ion transporters. Biochim Biophys Acta 1763(7):609–620

    Article  CAS  PubMed  Google Scholar 

  • Njus D, Kelley PM, Harnadek GJ, Pacquing YV (1987) Mechanism of ascorbic acid regeneration mediated by cytochrome b 561. Ann N Y Acad Sci 493:108–119

    Article  CAS  PubMed  Google Scholar 

  • Ogo Y, Itai RN, Nakanishi H, Inoue H, Kobayashi T, Suzuki M, Takahashi M, Mori S, Nishizawa NK (2006) Isolation and characterization of IRO2, a novel iron-regulated bHLH transcription factor in graminaceous plants. J Exp Bot 57(11):2867–2878

    Article  CAS  PubMed  Google Scholar 

  • Page MD, Kropat J, Hamel PP, Merchant SS (2009) Two Chlamydomonas CTR copper transporters with a novel cys-met motif are localized to the plasma membrane and function in copper assimilation. Plant Cell 21(3):928–943. doi:10.1105/tpc.108.064907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Page MD, Allen MD, Kropat J, Urzica EI, Karpowicz SJ, Hsieh SI, Loo JA, Merchant SS (2012) Fe sparing and Fe recycling contribute to increased superoxide dismutase capacity in iron-starved Chlamydomonas reinhardtii. Plant Cell 24(6):2649–2665. doi:10.1105/tpc.112.098962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penarrubia L, Andres-Colas N, Moreno J, Puig S (2010) Regulation of copper transport in Arabidopsis thaliana: a biochemical oscillator? J Biol Inorg Chem 15(1):29–36. doi:10.1007/s00775-009-0591-8

    Article  CAS  PubMed  Google Scholar 

  • Petit JM, Briat JF, Lobreaux S (2001) Structure and differential expression of the four members of the Arabidopsis thaliana ferritin gene family. Biochem J 359(Pt 3):575–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Philpott CC (2006) Iron uptake in fungi: a system for every source. Biochim Biophys Acta 1763(7):636–645

    Article  CAS  PubMed  Google Scholar 

  • Pilon M, Abdel-Ghany SE, Cohu CM, Gogolin KA, Ye H (2006) Copper cofactor delivery in plant cells. Curr Opin Plant Biol 9(3):256–263. doi:10.1016/j.pbi.2006.03.007

    Article  CAS  PubMed  Google Scholar 

  • Portnoy ME, Liu XF, Culotta VC (2000) Saccharomyces cerevisiae expresses three functionally distinct homologues of the Nramp family of metal transporters. Mol Cell Biol 20(21):7893–7902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puig S, Andres-Colas N, Garcia-Molina A, Penarrubia L (2007) Copper and iron homeostasis in Arabidopsis: responses to metal deficiencies, interactions and biotechnological applications. Plant Cell Environ 30(3):271–290. doi:10.1111/j.1365-3040.2007.01642.x

    Article  CAS  PubMed  Google Scholar 

  • Quinn JM, Merchant S (1995) Two copper-responsive elements associated with the Chlamydomonas Cyc6 gene function as targets for transcriptional activators. Plant Cell 7(5):623–628. doi:10.1105/tpc.7.5.623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinn JM, Barraco P, Eriksson M, Merchant S (2000) Coordinate copper- and oxygen-responsive Cyc6 and Cpx1 expression in Chlamydomonas is mediated by the same element. J Biol Chem 275(9):6080–6089

    Article  CAS  PubMed  Google Scholar 

  • Quinn JM, Eriksson M, Moseley JL, Merchant S (2002) Oxygen deficiency responsive gene expression in Chlamydomonas reinhardtii through a copper-sensing signal transduction pathway. Plant Physiol 128(2):463–471. doi:10.1104/pp.010694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rees EM, Lee J, Thiele DJ (2004) Mobilization of intracellular copper stores by the Ctr2 vacuolar copper transporter. J Biol Chem 279(52):54221–54229

    Google Scholar 

  • Riedel HD, Remus AJ, Fitscher BA, Stremmel W (1995) Characterization and partial purification of a ferrireductase from human duodenal microvillus membranes. Biochem J 309(Pt 3):745–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz FA, Marchesini N, Seufferheld M, Govindjee, Docampo R (2001) The polyphosphate bodies of Chlamydomonas reinhardtii possess a proton-pumping pyrophosphatase and are similar to acidocalcisomes. J Biol Chem 276(49):46196–46203

    Article  CAS  PubMed  Google Scholar 

  • Salahudeen AA, Thompson JW, Ruiz JC, Ma HW, Kinch LN, Li Q, Grishin NV, Bruick RK (2009) An E3 ligase possessing an iron-responsive hemerythrin domain is a regulator of iron homeostasis. Science 326(5953):722–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sancenon V, Puig S, Mira H, Thiele DJ, Penarrubia L (2003) Identification of a copper transporter family in Arabidopsis thaliana. Plant Mol Biol 51(4):577–587

    Article  CAS  PubMed  Google Scholar 

  • Santi S, Schmidt W (2009) Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots. New Phytol 183(4):1072–1084. doi:10.1111/j.1469-8137.2009.02908.x

    Article  CAS  PubMed  Google Scholar 

  • Sanvisens N, Bano MC, Huang M, Puig S (2011) Regulation of ribonucleotide reductase in response to iron deficiency. Mol Cell 44(5):759–769. doi:10.1016/j.molcel.2011.09.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaaf G, Honsbein A, Meda AR, Kirchner S, Wipf D, von Wirén N (2006) AtIREG2 encodes a tonoplast transport protein involved in iron-dependent nickel detoxification in Arabidopsis thaliana roots. J Biol Chem 281(35):25532–25540

    Article  CAS  PubMed  Google Scholar 

  • Selote D, Samira R, Matthiadis A, Gillikin JW, Long TA (2015) Iron-binding E3 ligase mediates iron response in plants by targeting basic helix-loop-helix transcription factors. Plant Physiol 167(1):273–286. doi:10.1104/pp.114.250837

    Article  CAS  PubMed  Google Scholar 

  • Shaw GC, Cope JJ, Li L, Corson K, Hersey C, Ackermann GE, Gwynn B, Lambert AJ, Wingert RA, Traver D, Trede NS, Barut BA, Zhou Y, Minet E, Donovan A, Brownlie A, Balzan R, Weiss MJ, Peters LL, Kaplan J, Zon LI, Paw BH (2006) Mitoferrin is essential for erythroid iron assimilation. Nature 440(7080):96–100. doi:10.1038/nature04512

    Article  CAS  PubMed  Google Scholar 

  • Shen J, Xu X, Li T, Cao D, Han Z (2008) An MYB transcription factor from Malus xiaojinensis has a potential role in iron nutrition. J Integr Plant Biol 50(10):1300–1306

    Article  CAS  PubMed  Google Scholar 

  • Shikanai T, Muller-Moule P, Munekage Y, Niyogi KK, Pilon M (2003) PAA1, a P-type ATPase of Arabidopsis, functions in copper transport in chloroplasts. Plant Cell 15(6):1333–1346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinclair SA, Kramer U (2012) The zinc homeostasis network of land plants. Biochim Biophys Acta 1823(9):1553–1567. doi:10.1016/j.bbamcr.2012.05.016

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Kaur N, Kosman DJ (2007) The metalloreductase Fre6p in Fe-efflux from the yeast vacuole. J Biol Chem 282(39):28619–28626

    Article  CAS  PubMed  Google Scholar 

  • Strozycki PM, Szymanski M, Szczurek A, Barciszewski J, Figlerowicz M (2010) A new family of ferritin genes from Lupinus luteus – comparative analysis of plant ferritins, their gene structure, and evolution. Mol Biol Evol 27(1):91–101. doi:10.1093/molbev/msp196

    Article  CAS  PubMed  Google Scholar 

  • Su D, Asard H (2006) Three mammalian cytochromes b 561 are ascorbate-dependent ferrireductases. FEBS J 273(16):3722–3734

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi F, Hori H, Obayashi E, Shiro Y, Tsubaki M (2004) Properties of two distinct heme centers of cytochrome b 561 from bovine chromaffin vesicles studied by EPR, resonance Raman, and ascorbate reduction assay. J Biochem 135(1):53–64

    Article  CAS  PubMed  Google Scholar 

  • Terauchi AM, Peers G, Kobayashi MC, Niyogi KK, Merchant SS (2010) Trophic status of Chlamydomonas reinhardtii influences the impact of iron deficiency on photosynthesis. Photosynth Res 105(1):39–49. doi:10.1007/s11120-010-9562-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terzulli AJ, Kosman DJ (2009) The Fox1 ferroxidase of Chlamydomonas reinhardtii: a new multicopper oxidase structural paradigm. J Biol Inorg Chem 14(2):315–325. doi:10.1007/s00775-008-0450-z

    Article  CAS  PubMed  Google Scholar 

  • Terzulli A, Kosman DJ (2010) Analysis of the high-affinity iron uptake system at the Chlamydomonas reinhardtii plasma membrane. Eukaryot Cell 9(5):815–826. doi:10.1128/EC.00310-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theil EC (1987) Ferritin: structure, gene regulation, and cellular function in animals, plants and microorganisms. Annu Rev Biochem 56:289–315

    Article  CAS  PubMed  Google Scholar 

  • Thomine S, Vert G (2013) Iron transport in plants: better be safe than sorry. Curr Opin Plant Biol 16(3):322–327. doi:10.1016/j.pbi.2013.01.003

    Article  CAS  PubMed  Google Scholar 

  • Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci U S A 97(9):4991–4996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tottey S, Block MA, Allen M, Westergren T, Albrieux C, Scheller HV, Merchant S, Jensen PE (2003) Arabidopsis CHL27, located in both envelope and thylakoid membranes, is required for the synthesis of protochlorophyllide. Proc Natl Acad Sci U S A 100(26):16119–16124. doi:10.1073/pnas.2136793100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trost P, Bèrczi A, Sparla F, Sponza G, Marzadori B, Asard H, Pupillo P (2000) Purification of cytochrome b 561 from bean hypocotyls plasma membrane. Evidence for the presence of two heme centers. Biochim Biophys Acta 1468(1–2):1–5

    CAS  PubMed  Google Scholar 

  • Urzica EI, Casero D, Yamasaki H, Hsieh SI, Adler LN, Karpowicz SJ, Blaby-Haas CE, Clarke SG, Loo JA, Pellegrini M, Merchant SS (2012) Systems and trans-system level analysis identifies conserved iron deficiency responses in the plant lineage. Plant Cell 24(10):3921–3948. doi:10.1105/tpc.112.102491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Wuytswinkel O, Vansuyt G, Grignon N, Fourcroy P, Briat JF (1998) Iron homeostasis alteration in transgenic tobacco overexpressing ferritin. Plant J 17(1):93–97

    Article  Google Scholar 

  • Vargas JD, Herpers B, McKie AT, Gledhill S, McDonnell J, van den Heuvel M, Davies KE, Ponting CP (2003) Stromal cell-derived receptor 2 and cytochrome b 561 are functional ferric reductases. Biochim Biophys Acta 1651(1-2):116–123

    Article  CAS  PubMed  Google Scholar 

  • Vashisht AA, Zumbrennen KB, Huang X, Powers DN, Durazo A, Sun D, Bhaskaran N, Persson A, Uhlen M, Sangfelt O, Spruck C, Leibold EA, Wohlschlegel JA (2009) Control of iron homeostasis by an iron-regulated ubiquitin ligase. Science 326(5953):718–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wade VJ, Treffry A, Laulhere JP, Bauminger ER, Cleton MI, Mann S, Briat JF, Harrison PM (1993) Structure and composition of ferritin cores from pea seed (Pisum sativum). Biochim Biophys Acta 1161(1):91–96

    Article  CAS  PubMed  Google Scholar 

  • Walker EL, Connolly EL (2008) Time to pump iron: iron-deficiency-signaling mechanisms of higher plants. Curr Opin Plant Biol 11(5):530–535. doi:10.1016/j.pbi.2008.06.013

    Article  CAS  PubMed  Google Scholar 

  • Williams RJP (2001) Chemical selection of elements by cells. Coord Chem Rev 216–217:583–595. doi:10.1016/S0010-8545(00)00398-2

    Article  Google Scholar 

  • Yagisawa F, Nishida K, Yoshida M, Ohnuma M, Shimada T, Fujiwara T, Yoshida Y, Misumi O, Kuroiwa H, Kuroiwa T (2009) Identification of novel proteins in isolated polyphosphate vacuoles in the primitive red alga Cyanidioschyzon merolae. Plant J 60(5):882–893

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki H, Hayashi M, Fukazawa M, Kobayashi Y, Shikanai T (2009) SQUAMOSA promoter binding protein-like7 is a central regulator for copper homeostasis in Arabidopsis. Plant Cell 21(1):347–361. doi:10.1105/tpc.108.060137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan YX, Zhang J, Wang DW, Ling HQ (2005) AtbHLH29 of Arabidopsis thaliana is a functional ortholog of tomato FER involved in controlling iron acquisition in strategy I plants. Cell Res 15(8):613–621

    Article  CAS  PubMed  Google Scholar 

  • Zancani M, Peresson C, Biroccio A, Federici G, Urbani A, Murgia I, Soave C, Micali F, Vianello A, Macri F (2004) Evidence for the presence of ferritin in plant mitochondria. Eur J Biochem 271(18):3657–3664. doi:10.1111/j.1432-1033.2004.04300.x

    Article  CAS  PubMed  Google Scholar 

  • Zhang DL, Su D, Bérczi A, Vargas A, Asard H (2006) An ascorbate-reducible cytochrome b 561 is localized in macrophage lysosomes. Biochim Biophys Acta 1760(12):1903–1913

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Liu B, Li M, Feng D, Jin H, Wang P, Liu J, Xiong F, Wang J, Wang HB (2015) The bHLH transcription factor bHLH104 interacts with IAA-LEUCINE RESISTANT3 and modulates iron homeostasis in Arabidopsis. Plant Cell 27(3):787–805. doi:10.1105/tpc.114.132704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng L, Huang F, Narsai R, Wu J, Giraud E, He F, Cheng L, Wang F, Wu P, Whelan J, Shou H (2009) Physiological and transcriptome analysis of iron and phosphorus interaction in rice seedlings. Plant Physiol 151(1):262–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The research of EIU is funded by the Deutsche Forschungsgemeinschaft (Grant no. UR 269/1-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugen I. Urzica .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Urzica, E.I. (2017). Chlamydomonas: Regulation Toward Metal Deficiencies. In: Hippler, M. (eds) Chlamydomonas: Molecular Genetics and Physiology. Microbiology Monographs, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-319-66365-4_7

Download citation

Publish with us

Policies and ethics