Advertisement

Chlamydomonas reinhardtii: Protein Glycosylation and Production of Biopharmaceuticals

  • Elodie Mathieu-Rivet
  • Patrice Lerouge
  • Muriel Bardor
Chapter
Part of the Microbiology Monographs book series (MICROMONO, volume 31)

Abstract

Recently, microalgae species such as Chlamydomonas reinhardtii have been investigated as potential biofactories for the production of biopharmaceuticals (Mathieu-Rivet et al., Front Plant Sci 5:359, 2014; Rasala and Mayfield, Photosynth Res 123:227–239, 2015). Biopharmaceuticals are protein-based pharmaceuticals which are produced recombinantly in living cells used as biofactories (Walsh, Nat Biotechnol 28:917–924, 2010; Walsh, Nat Biotechnol 32:992–1000, 2014). The pharmaceutical market encompasses more than 200 biopharmaceutical products (Walsh, Nat Biotechnol 32:992–1000, 2014). Most of these biopharmaceuticals are glycosylated proteins, and it is currently well established that their glycosylation is primordial for their stability, half-life, and biological activity (Walsh, Nat Biotechnol 28:917–924, 2010; Lingg et al., Biotechnol J, 7:1462–1472, 2012). Since enzymes involved in the glycosylation processing are localized in the endoplasmic reticulum and the Golgi apparatus, biopharmaceuticals produced in C. reinhardtii must travel through these organelles, which are components of the secretory pathway, to acquire an appropriate glycosylation. In this chapter, the C. reinhardtii protein glycosylation pathways as well as its capacity to synthesize and transport nucleotide sugars will be described and discussed.

Notes

Acknowledgments

The authors are indebted to all coworkers and students at the Glyco-MEV laboratory who are currently contributing to the microalgae research project or did so in the past. They acknowledge Magda Dudek for careful reading of the manuscript. They are also thankful to the University of Rouen, the region Haute-Normandie now called Normandie and the IUF for their financial support.

References

  1. Aebi M (2013) N-linked protein glycosylation in the ER. Biochim Biophys Acta (BBA) Mol Cell Res 1833:2430–2437CrossRefGoogle Scholar
  2. Almaraz-Delgado AL, Flores-Uribe J, Pérez-España VH, Salgado-Manjarrez E, Badillo-Corona JA (2014) Production of therapeutic proteins in the chloroplast of Chlamydomonas reinhardtii. AMB Express 4:57PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bakker H, Bardor M, Molthoff JW, Gomord V, Elbers I, Stevens LH, Jordi W, Lommen A, Faye L, Lerouge P et al (2001) Galactose-extended glycans of antibodies produced by transgenic plants. Proc Natl Acad Sci 98:2899–2904PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bakker H, Routier F, Oelmann S, Jordi W, Lommen A, Gerardy-Schahn R, Bosch D (2005) Molecular cloning of two Arabidopsis UDP-galactose transporters by complementation of a deficient Chinese hamster ovary cell line. Glycobiology 15(2):193–201PubMedCrossRefGoogle Scholar
  5. Baldwin TC, Handford MG, Yuseff MI, Orellana A, Dupree P (2001) Identification and characterization of GONST1, a golgi-localized GDP-mannose transporter in Arabidopsis. Plant Cell 13(10):2283–2295PubMedPubMedCentralCrossRefGoogle Scholar
  6. Barahimipour R, Neupert J, Bock R (2016) Efficient expression of nuclear transgenes in the green alga Chlamydomonas: synthesis of an HIV antigen and development of a new selectable marker. Plant Mol Biol 90:403–418PubMedPubMedCentralCrossRefGoogle Scholar
  7. Barber C, Rösti J, Rawat A, Findlay K, Roberts K, Seifert GJ (2006) Distinct properties of the five UDP-D-glucose/UDP-D-galactose 4-epimerase isoforms of Arabidopsis thaliana. J Biol Chem 281:17276–17285PubMedCrossRefGoogle Scholar
  8. Bardor M, Burel C, Villarejo A, Cadoret J-P, Carlier A, Lerouge P (2011) Chapter 5: Plant N-glycosylation: an engineered pathway for the production of therapeutic plant-derived glycoproteins. In: Brooks S, Rudd P, Apelmelk B (eds) Glycosylation in diverse cell systems – challenges and new frontiers in experimental glycobiology. Essential reviews in experimental biology, vol 4. Society for Experimental Biology, London, pp 93–118Google Scholar
  9. Bar-Peled M, O’Neill MA (2011) Plant nucleotide sugar formation, interconversion, and salvage by sugar recycling. Annu Rev Plant Biol 62:127–155PubMedCrossRefGoogle Scholar
  10. Barrera DJ, Mayfield SP (2013) High-value recombinant protein production in microalgae. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology, 2nd edn. Wiley, Oxford, pp 532–544CrossRefGoogle Scholar
  11. Beer LL, Boyd ES, Peters JW, Posewitz MC (2009) Engineering algae for biohydrogen and biofuel production. Curr Opin Biotechnol 20:264–271PubMedCrossRefGoogle Scholar
  12. Berlec A, Strukelj B (2013) Current state and recent advances in biopharmaceutical production in Escherichia coli, yeasts and mammalian cells. J Ind Microbiol Biotechnol 40(3–4):257–274PubMedCrossRefGoogle Scholar
  13. Beverley SM, Owens KL, Showalter M, Griffith CL, Doering TL, Jones VC, McNeil MR (2005) Eukaryotic UDP-galactopyranose mutase (GLF gene) in microbial and metazoal pathogens. Eukaryot Cell 4:1147–1154PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bollig K, Lamshöft M, Schweimer K, Marner F-J, Budzikiewicz H, Waffenschmidt S (2007) Structural analysis of linear hydroxyproline-bound O-glycans of Chlamydomonas reinhardtii—conservation of the inner core in Chlamydomonas and land plants. Carbohydr Res 342:2557–2566PubMedCrossRefGoogle Scholar
  15. Brooks S (2011) Chapter 4: Species differences in protein glycosylation and their implication for biotechnology. In: Brooks S, Rudd P, Apelmelk B (eds) Glycosylation in diverse cell systems – challenges and new frontiers in experimental glycobiology. Essential reviews in experimental biology, vol 4. Society for Experimental Biology, London, pp 93–118Google Scholar
  16. Catt JW, Hills GJ, Roberts K (1978) Cell wall glycoproteins from Chlamydomonas reinhardii, and their self-assembly. Planta 138:91–98PubMedCrossRefGoogle Scholar
  17. Chen M-H, Huang L-F, Li H, Chen Y-R, Yu S-M (2004) Signal peptide-dependent targeting of a rice α-amylase and cargo proteins to plastids and extracellular compartments of plant cells. Plant Physiol 135:1367–1377PubMedPubMedCentralCrossRefGoogle Scholar
  18. Conklin PL, Norris SR, Wheeler GL, Williams EH, Smirnoff N, Last RL (1999) Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis. Proc Natl Acad Sci 96:4198–4203PubMedPubMedCentralCrossRefGoogle Scholar
  19. Corfield AP (2015) Mucins: a biologically relevant glycan barrier in mucosal protection. Biochim Biophys Acta (BBA) Gen Subj 1850:236–252CrossRefGoogle Scholar
  20. Dance A (2010) From pond scum to pharmacy shelf. Nat Med 16:146–149PubMedCrossRefGoogle Scholar
  21. Dauvillée D, Delhaye S, Gruyer S, Slomianny C, Moretz SE, d’Hulst C, Long CA, Ball SG, Tomavo S (2010) Engineering the chloroplast targeted malarial vaccine antigens in Chlamydomonas starch granules. PLoS One 5:e15424PubMedPubMedCentralCrossRefGoogle Scholar
  22. De Muynck B, Navarre C, Boutry M (2010) Production of antibodies in plants: status after twenty years. Plant Biotechnol J 8:529–563PubMedCrossRefGoogle Scholar
  23. Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27:297–306PubMedCrossRefGoogle Scholar
  24. Dicker M, Strasser R (2015) Using glyco-engineering to produce therapeutic proteins. Expert Opin Biol Ther 15(10):1501–1516PubMedCrossRefGoogle Scholar
  25. Ebert B, Rautengarten C, Guo X, Xiong G, Stonebloom S, Smith-Moritz AM, Herter T, Chan LJG, Adams PD, Petzold CJ et al (2015) Identification and characterization of a Golgi-localized UDP-xylose transporter family from Arabidopsis. Plant Cell 27:1218–1227PubMedPubMedCentralCrossRefGoogle Scholar
  26. Eichler-Stahlberg A, Weisheit W, Ruecker O, Heitzer M (2009) Strategies to facilitate transgene expression in Chlamydomonas reinhardtii. Planta 229:873–883PubMedCrossRefGoogle Scholar
  27. Eicks M, Maurino V, Knappe S, Flugge U-I, Fischer K (2002) The plastidic pentose phosphate translocator represents a link between the cytosolic and the plastidic pentose phosphate pathways in plants. Plant Physiol 128:512–522PubMedPubMedCentralCrossRefGoogle Scholar
  28. Elvin JG, Couston RG, van der Walle CF (2013) Therapeutic antibodies: market considerations, disease targets and bioprocessing. Int J Pharm 440:83–98PubMedCrossRefGoogle Scholar
  29. Ferris PJ, Woessner JP, Waffenschmidt S, Kilz S, Drees J, Goodenough UW (2001) Glycosylated polyproline II rods with kinks as a structural motif in plant hydroxyproline-rich glycoproteins. Biochemistry (Mosc) 40:2978–2987CrossRefGoogle Scholar
  30. Gao X-D, Nishikawa A, Dean N (2001) Identification of a conserved motif in the yeast Golgi GDP-mannose transporter required for binding to nucleotide sugar. J Biol Chem 276:4424–4432PubMedCrossRefGoogle Scholar
  31. Garénaux E, Shams-Eldin H, Chirat F, Bieker U, Schmidt J, Michalski J-C, Cacan R, Guérardel Y, Schwarz RT (2008) The dual origin of Toxoplasma gondii N-Glycans. Biochemistry (Mosc) 47:12270–12276CrossRefGoogle Scholar
  32. Gill DJ, Clausen H, Bard F (2011) Location, location, location: new insights into O-GalNAc protein glycosylation. Trends Cell Biol 21:149–158PubMedCrossRefGoogle Scholar
  33. Gomord V, Fitchette A-C, Menu-Bouaouiche L, Saint-Jore-Dupas C, Plasson C, Michaud D, Faye L (2010) Plant-specific glycosylation patterns in the context of therapeutic protein production: PMP-specific glycosylation patterns. Plant Biotechnol J 8:564–587PubMedCrossRefGoogle Scholar
  34. Gong Y, Hu H, Gao Y, Xu X, Gao H (2011) Microalgae as platforms for production of recombinant proteins and valuable compounds: progress and prospects. J Ind Microbiol Biotechnol 38(12):1879–1890PubMedCrossRefGoogle Scholar
  35. Goodenough UW, Gebhart B, Mecham RP, Heuser JE (1986) Crystals of the Chlamydomonas reinhardtii cell wall: polymerization, depolymerization, and purification of glycoprotein monomers. J Cell Biol 103:405–417PubMedCrossRefGoogle Scholar
  36. Gregory JA, Topol AB, Doerner DZ, Mayfield S (2013) Alga-produced cholera toxin-Pfs25 fusion proteins as oral vaccines. Appl Environ Microbiol 79:3917–3925PubMedPubMedCentralCrossRefGoogle Scholar
  37. Gregory JA, Shepley-McTaggart A, Umpierrez M, Hurlburt BK, Maleki SJ, Sampson HA, Mayfield SP, Berin MC (2016) Immunotherapy using algal-produced Ara h 1 core domain suppresses peanut allergy in mice. Plant Biotechnol J 14:1541–1550PubMedPubMedCentralCrossRefGoogle Scholar
  38. Handford MG, Sicilia F, Brandizzi F, Chung JH, Dupree P (2004) Arabidopsis thaliana expresses multiple Golgi-localised nucleotide-sugar transporters related to GONST1. Mol Gen Genomics 272:397–410CrossRefGoogle Scholar
  39. Handford M, Rodríguez-Furlán C, Marchant L, Segura M, Gómez D, Alvarez-Buylla E, Xiong GY, Pauly M, Orellana A (2012) Arabidopsis thaliana AtUTr7 encodes a golgi-localized UDP-glucose/UDP-galactose transporter that affects lateral root emergence. Mol Plant 5(6):1263–1280PubMedCrossRefGoogle Scholar
  40. Harper AD, Bar-Peled M (2002) Biosynthesis of UDP-xylose. Cloning and characterization of a novel Arabidopsis gene family, UXS, encoding soluble and putative membrane-bound UDP-glucuronic acid decarboxylase isoforms. Plant Physiol 130:2188–2198PubMedPubMedCentralCrossRefGoogle Scholar
  41. Helenius J, Aebi M (2002) Transmembrane movement of dolichol linked carbohydrates during N-glycoprotein biosynthesis in the endoplasmic reticulum. Semin Cell Dev Biol 13(3):171–178PubMedCrossRefGoogle Scholar
  42. Helenius J, Ng DTW, Marolda CL, Walter P, Valvano MA, Aebi M (2002) Translocation of lipid-linked oligosaccharides across the ER membrane requires Rft1 protein. Nature 415:447–450PubMedCrossRefGoogle Scholar
  43. Hempel F, Maier UG (2016) Microalgae as solar-powered protein factories. Adv Exp Med Biol 896:241–262PubMedCrossRefGoogle Scholar
  44. Hirschberg CB, Robbins PW, Abeijon C (1998) Transporters of nucleotide sugars, ATP, and nucleotide sulfate in the endoplasmic reticulum and Golgi apparatus. Annu Rev Biochem 67:49–69PubMedCrossRefGoogle Scholar
  45. Hossler P, Khattak SF, Li ZJ (2009) Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology 19:936–949PubMedCrossRefGoogle Scholar
  46. Huang C-J, Lin H, Yang X (2012) Industrial production of recombinant therapeutics in Escherichia Coli and its recent advancements. J Ind Microbiol Biotechnol 39:383–399PubMedCrossRefGoogle Scholar
  47. Jiang J, Tian F, Cai Y, Qian X, Costello CE, Ying W (2014) Site-specific qualitative and quantitative analysis of the N- and O-glycoforms in recombinant human erythropoietin. Anal Bioanal Chem 406:6265–6274PubMedPubMedCentralCrossRefGoogle Scholar
  48. Kelleher DJ, Gilmore R (2006) An evolving view of the eukaryotic oligosaccharyltransferase. Glycobiology 16:47R–62RPubMedCrossRefGoogle Scholar
  49. Kelleher DJ, Banerjee S, Cura AJ, Samuelson J, Gilmore R (2007) Dolichol-linked oligosaccharide selection by the oligosaccharyltransferase in protist and fungal organisms. J Cell Biol 177:29–37PubMedPubMedCentralCrossRefGoogle Scholar
  50. Keskiaho K, Hieta R, Sormunen R, Myllyharju J (2007) Chlamydomonas reinhardtii has multiple prolyl 4-hydroxylases, one of which is essential for proper cell wall assembly. Plant Cell 19:256–269PubMedPubMedCentralCrossRefGoogle Scholar
  51. Kieliszewski MJ, Lamport DTA (1994) Extensin: repetitive motifs, functional sites, post-translational codes, and phylogeny. Plant J 5:157–172PubMedCrossRefGoogle Scholar
  52. Kleczkowski LA, Geisler M, Ciereszko I, Johansson H (2004) UDP-glucose pyrophosphorylase. An old protein with new tricks. Plant Physiol 134:912–918PubMedPubMedCentralCrossRefGoogle Scholar
  53. Klinghammer M, Tenhaken R (2007) Genome-wide analysis of the UDP-glucose dehydrogenase gene family in Arabidopsis, a key enzyme for matrix polysaccharides in cell walls. J Exp Bot 58:3609–3621PubMedCrossRefGoogle Scholar
  54. Knappe S, Flügge U-I, Fischer K (2003a) Analysis of the plastidic phosphate translocator gene family in Arabidopsis and identification of new phosphate translocator-homologous transporters, classified by their putative substrate-binding site. Plant Physiol 131:1178–1190PubMedPubMedCentralCrossRefGoogle Scholar
  55. Knappe S, Löttgert T, Schneider A, Voll L, Flügge U-I, Fischer K (2003b) Characterization of two functional phosphoenolpyruvate/phosphate translocator (PPT) genes in Arabidopsis—AtPPT1 may be involved in the provision of signals for correct mesophyll development. Plant J Cell Mol Biol 36:411–420CrossRefGoogle Scholar
  56. Kotani A, Tsuji M, Azama Y, Ishii T, Takeda T, Yamashita T, Shimojima M, Konishi T (2013) Purification and characterization of UDP-arabinopyranose mutase from Chlamydomonas reinhardtii. Biosci Biotechnol Biochem 77:1874–1878PubMedCrossRefGoogle Scholar
  57. Lam MK, Lee KT (2012) Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv 30:673–690PubMedCrossRefGoogle Scholar
  58. Lauersen KJ, Vanderveer TL, Berger H, Kaluza I, Mussgnug JH, Walker VK, Kruse O (2013a) Ice recrystallization inhibition mediated by a nuclear-expressed and -secreted recombinant ice-binding protein in the microalga Chlamydomonas reinhardtii. Appl Microbiol Biotechnol 97:9763–9772PubMedCrossRefGoogle Scholar
  59. Lauersen KJ, Berger H, Mussgnug JH, Kruse O (2013b) Efficient recombinant protein production and secretion from nuclear transgenes in Chlamydomonas reinhardtii. J Biotechnol 167:101–110PubMedCrossRefGoogle Scholar
  60. Lauersen KJ, Kruse O, Mussgnug JH (2015a) Targeted expression of nuclear transgenes in Chlamydomonas reinhardtii with a versatile, modular vector toolkit. Appl Microbiol Biotechnol 99:3491–3503PubMedCrossRefGoogle Scholar
  61. Lauersen KJ, Huber I, Wichmann J, Baier T, Leiter A, Gaukel V, Kartushin V, Rattenholl A, Steinweg C, von Riesen L et al (2015b) Investigating the dynamics of recombinant protein secretion from a microalgal host. J Biotechnol 215:62–71PubMedCrossRefGoogle Scholar
  62. Lerouge P, Cabanes-Macheteau M, Rayon C, Fischette-Lainé AC, Gomord V, Faye L (1998) N-glycoprotein biosynthesis in plants: recent developments and future trends. Plant Mol Biol 38:31–48PubMedCrossRefGoogle Scholar
  63. Levy-Ontman O, Fisher M, Shotland Y, Weinstein Y, Tekoah Y, Arad S (2014) Genes involved in the endoplasmic reticulum N-glycosylation pathway of the red microalga Porphyridium sp.: a bioinformatic study. Int J Mol Sci 15:2305–2326PubMedPubMedCentralCrossRefGoogle Scholar
  64. Lingg N, Zhang P, Song Z, Bardor M (2012) The sweet tooth of biopharmaceuticals: importance of recombinant protein glycosylation analysis. Biotechnol J 7:1462–1472PubMedCrossRefGoogle Scholar
  65. Lu J, Takahashi T, Ohoka A, Nakajima K, Hashimoto R, Miura N, Tachikawa H, Gao XD (2012) Alg14 organizes the formation of a multiglycosyltransferase complex involved in initiation of lipid-linked oligosaccharide biosynthesis. Glycobiology 22(4):504–516PubMedCrossRefGoogle Scholar
  66. Ma JK-C, Drossard J, Lewis D, Altmann F, Boyle J, Christou P, Cole T, Dale P, van Dolleweerd CJ, Isitt V et al (2015) Regulatory approval and a first-in-human phase I clinical trial of a monoclonal antibody produced in transgenic tobacco plants. Plant Biotechnol J 13:1106–1120PubMedCrossRefGoogle Scholar
  67. Manuell AL, Beligni MV, Elder JH, Siefker DT, Tran M, Weber A, McDonald TL, Mayfield SP (2007) Robust expression of a bioactive mammalian protein in Chlamydomonas chloroplast. Plant Biotechnol J 5:402–412PubMedCrossRefGoogle Scholar
  68. Mathieu-Rivet E, Scholz M, Arias C, Dardelle F, Schulze S, Le Mauff F, Teo G, Hochmal AK, Blanco-Rivero A, Loutelier-Bourhis C et al (2013) Exploring the N-glycosylation pathway in Chlamydomonas reinhardtii unravels novel complex structures. Mol Cell Proteomics 12:3160–3183PubMedPubMedCentralCrossRefGoogle Scholar
  69. Mathieu-Rivet E, Kiefer-Meyer M-C, Vanier G, Ovide C, Burel C, Lerouge P, Bardor M (2014) Protein N-glycosylation in eukaryotic microalgae and its impact on the production of nuclear expressed biopharmaceuticals. Front Plant Sci 5:359PubMedPubMedCentralCrossRefGoogle Scholar
  70. Matsuoka K, Watanabe N, Nakamura K (1995) O-glycosylation of a precursor to a sweet potato vacuolar protein, sporamin, expressed in tobacco cells. Plant J Cell Mol Biol 8:877–889CrossRefGoogle Scholar
  71. Maxmen A (2012) Drug-making plant blooms. Nature 485:160PubMedCrossRefGoogle Scholar
  72. Mayfield SP, Franklin SE (2005) Expression of human antibodies in eukaryotic micro-algae. Vaccine 23:1828–1832PubMedCrossRefGoogle Scholar
  73. Mayfield SP, Franklin SE, Lerner RA (2003) Expression and assembly of a fully active antibody in algae. Proc Natl Acad Sci 100:438–442PubMedPubMedCentralCrossRefGoogle Scholar
  74. Mayfield SP, Manuell AL, Chen S, Wu J, Tran M, Siefker D, Muto M, Marin-Navarro J (2007) Chlamydomonas reinhardtii chloroplasts as protein factories. Curr Opin Biotechnol 18:126–133PubMedCrossRefGoogle Scholar
  75. Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Maréchal-Drouard L et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–250PubMedPubMedCentralCrossRefGoogle Scholar
  76. Merchant SS, Kropat J, Liu B, Shaw J, Warakanont J (2012) TAG, You’re it! Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation. Curr Opin Biotechnol 23:352–363PubMedCrossRefGoogle Scholar
  77. Miller DH, Lamport DT, Miller M (1972) Hydroxyproline heterooligosaccharides in Chlamydomonas. Science 176:918–920PubMedCrossRefGoogle Scholar
  78. Mimura Y, Sondermann P, Ghirlando R, Lund J, Young SP, Goodall M, Jefferis R (2001) Role of oligosaccharide residues of IgG1-Fc in Fc RIIb binding. J Biol Chem 276:45539–45547PubMedCrossRefGoogle Scholar
  79. Neupert J, Karcher D, Bock R (2009) Generation of Chlamydomonas strains that efficiently express nuclear transgenes. Plant J 57:1140–1150PubMedCrossRefGoogle Scholar
  80. Nguema-Ona E, Vicré-Gibouin M, Gotté M, Plancot B, Lerouge P, Bardor M, Driouich A (2014) Cell wall O-glycoproteins and N-glycoproteins: aspects of biosynthesis and function. Front Plant Sci 5Google Scholar
  81. Niewiadomski P, Knappe S, Geimer S, Fischer K, Schulz B, Unte US, Rosso MG, Ache P, Flügge U-I, Schneider A (2005) The Arabidopsis plastidic glucose 6-phosphate/phosphate translocator GPT1 is essential for pollen maturation and embryo sac development. Plant Cell 17:760–775PubMedPubMedCentralCrossRefGoogle Scholar
  82. Noffz C, Keppler-Ross S, Dean N (2009) Hetero-oligomeric interactions between early glycosyltransferases of the dolichol cycle. Glycobiology 19:472–478PubMedPubMedCentralCrossRefGoogle Scholar
  83. Norambuena L, Marchant L, Berninsone P, Hirschberg CB, Silva H, Orellana A (2002) Transport of UDP-galactose in plants identification and functional characterization of AtUTr1, Arabidopsis Thaliana UDP-Galactose/UDP-glucose transporter. J Biol Chem 277:32923–32929PubMedCrossRefGoogle Scholar
  84. Norambuena L, Nilo R, Handford M, Reyes F, Marchant L, Meisel L, Orellana A (2005) AtUTr2 is an Arabidopsis thaliana nucleotide sugar transporter located in the Golgi apparatus capable of transporting UDP-galactose. Planta 222:521–529PubMedCrossRefGoogle Scholar
  85. Obembe OO, Popoola JO, Leelavathi S, Reddy SV (2011) Advances in plant molecular farming. Biotechnol Adv 29:210–222PubMedCrossRefGoogle Scholar
  86. Pattathil S, Harper AD, Bar-Peled M (2005) Biosynthesis of UDP-xylose: characterization of membrane-bound AtUxs2. Planta 221:538–548PubMedCrossRefGoogle Scholar
  87. Pérez Espana VH, Lopez Pérez PA, Romero Cortes T, Peralta GM, Duran Figueroa N, Badillo Corona A (2016) Transformation of chloroplasts of Chlamydomonas for the production of therapeutic proteins. In: Liu J, Sun Z, Gerken H (eds) Recent advances in microalgal biotechnology. OMICS, Foster City, pp 219–232Google Scholar
  88. Pfeffer S, Dudek J, Gogala M, Schorr S, Linxweiler J, Lang S, Becker T, Beckmann R, Zimmermann R, Forster F (2014) Structure of the mammalian oligosaccharyltransferase complex in the native ER protein translocon. Nat Commun 5:3072PubMedCrossRefGoogle Scholar
  89. Qin C, Qian W, Wang W, Wu Y, Yu C, Jiang X, Wang D, Wu P (2008) GDP-mannose pyrophosphorylase is a genetic determinant of ammonium sensitivity in Arabidopsis thaliana. Proc Natl Acad Sci U S A 105:18308–18313PubMedPubMedCentralCrossRefGoogle Scholar
  90. Rasala BA, Mayfield SP (2015) Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses. Photosynth Res 123:227–239PubMedCrossRefGoogle Scholar
  91. Rasala BA, Muto M, Lee PA, Jager M, Cardoso RMF, Behnke CA, Kirk P, Hokanson CA, Crea R, Mendez M et al (2010) Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechnol J 8:719–733PubMedPubMedCentralCrossRefGoogle Scholar
  92. Rasala BA, Lee PA, Shen Z, Briggs SP, Mendez M, Mayfield SP (2012) Robust expression and secretion of Xylanase1 in Chlamydomonas reinhardtii by fusion to a selection gene and processing with the FMDV 2A peptide. PLoS One 7:e43349PubMedPubMedCentralCrossRefGoogle Scholar
  93. Rautengarten C, Ebert B, Herter T, Petzold CJ, Ishii T, Mukhopadhyay A, Usadel B, Scheller HV (2011) The interconversion of UDP-arabinopyranose and UDP-arabinofuranose is indispensable for plant development in Arabidopsis. Plant Cell 23:1373–1390PubMedPubMedCentralCrossRefGoogle Scholar
  94. Rautengarten C, Ebert B, Moreno I, Temple H, Herter T, Link B, Donas-Cofre D, Moreno A, Saez-Aguayo S, Blanco F et al (2014) The Golgi localized bifunctional UDP-rhamnose/UDP-galactose transporter family of Arabidopsis. Proc Natl Acad Sci 111:11563–11568PubMedPubMedCentralCrossRefGoogle Scholar
  95. Reboul R, Geserick C, Pabst M, Frey B, Wittmann D, Lutz-Meindl U, Leonard R, Tenhaken R (2011) Down-regulation of UDP-glucuronic acid biosynthesis leads to swollen plant cell walls and severe developmental defects associated with changes in Pectic polysaccharides. J Biol Chem 286:39982–39992PubMedPubMedCentralCrossRefGoogle Scholar
  96. Reyes F, Orellana A (2008) Golgi transporters: opening the gate to cell wall polysaccharide biosynthesis. Curr Opin Plant Biol 11:244–251PubMedCrossRefGoogle Scholar
  97. Reyes F, Marchant L, Norambuena L, Nilo R, Silva H, Orellana A (2006) AtUTr1, a UDP-glucose/UDP-galactose transporter from Arabidopsis thaliana, is located in the endoplasmic reticulum and up-regulated by the unfolded protein response. J Biol Chem 281:9145–9151PubMedCrossRefGoogle Scholar
  98. Reyes F, León G, Donoso M, Brandizzí F, Weber APM, Orellana A (2010) The nucleotide sugar transporters AtUTr1 and AtUTr3 are required for the incorporation of UDP-glucose into the endoplasmic reticulum, are essential for pollen development and are needed for embryo sac progress in Arabidopsis thaliana. Plant J 61:423–435PubMedCrossRefGoogle Scholar
  99. Roberts K, Gurney-Smith M, Hills GJ (1972) Structure, composition and morphogenesis of the cell wall of Chlamydomonas reinhardi. I. Ultrastructure and preliminary chemical analysis. J Ultrastruct Res 40:599–613PubMedCrossRefGoogle Scholar
  100. Rollwitz I, Santaella M, Hille D, Flügge UI, Fischer K (2006) Characterization of AtNST-KT1, a novel UDPgalactose transporter from Arabidopsis thaliana. FEBS Lett 580(17):4246–4251PubMedCrossRefGoogle Scholar
  101. Rosti J, Barton CJ, Albrecht S, Dupree P, Pauly M, Findlay K, Roberts K, Seifert GJ (2007) UDP-glucose 4-epimerase isoforms UGE2 and UGE4 cooperate in providing UDP-galactose for cell wall biosynthesis and growth of Arabidopsis Thaliana. Plant cell 19:1565–1579PubMedPubMedCentralCrossRefGoogle Scholar
  102. Rush JS, Gao N, Lehrman MA, Matveev S, Waechter CJ (2009) Suppression of Rft1 expression does not impair the transbilayer movement of Man5GlcNAc2-P-P-dolichol in sealed microsomes from yeast. J Biol Chem 284:19835–19842PubMedPubMedCentralCrossRefGoogle Scholar
  103. Saito F, Suyama A, Oka T, Yoko-o T, Matsuoka K, Jigami Y, Shimma Y (2014) Identification of novel peptidyl serine α-galactosyltransferase gene family in plants. J Biol Chem 289:20405–20420PubMedPubMedCentralCrossRefGoogle Scholar
  104. Samuelson J, Banerjee S, Magnelli P, Cui J, Kelleher DJ, Gilmore R, Robbins PW (2005) The diversity of dolichol-linked precursors to Asn-linked glycans likely results from secondary loss of sets of glycosyltransferases. Proc Natl Acad Sci U S A 102:1548–1553PubMedPubMedCentralCrossRefGoogle Scholar
  105. Sasso S, Pohnert G, Lohr M, Mittag M, Hertweck C (2012) Microalgae in the postgenomic era: a blooming reservoir for new natural products. FEMS Microbiol Rev 36:761–785PubMedCrossRefGoogle Scholar
  106. Schiller B, Hykollari A, Yan S, Paschinger K, Wilson IBH (2012) Complicated N-linked glycans in simple organisms. Biol Chem 393(8):661–673PubMedPubMedCentralCrossRefGoogle Scholar
  107. Schneider A, Häusler R, Kolukisaoglu U, Kunze R et al (2002) An Arabidopsis thaliana knock-out mutant of the chloroplast triose phosphate/phosphate translocator is severely compromised only when starch synthesis, but not starch mobilisation is abolished. Plant J 32:685–699PubMedCrossRefGoogle Scholar
  108. Scranton MA, Ostrand JT, Georgianna DR, Lofgren SM, Li D, Ellis RC, Carruthers DN, Dräger A, Masica DL, Mayfield SP (2016) Synthetic promoters capable of driving robust nuclear gene expression in the green alga Chlamydomonas reinhardtii. Algal Res 15:135–142CrossRefGoogle Scholar
  109. Shaaltiel Y, Bartfeld D, Hashmueli S, Baum G, Brill-Almon E, Galili G, Dym O, Boldin-Adamsky SA, Silman I, Sussman JL (2007) Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher’s disease using a plant cell system. Plant Biotechnol J 5:579–590PubMedCrossRefGoogle Scholar
  110. Smith E, Roberts K, Hutchings A, Galfre G (1984) Monoclonal antibodies to the major structural glycoprotein of the Chlamydomonas cell wall. Planta 161:330–338PubMedCrossRefGoogle Scholar
  111. Solís D, Bovin NV, Davis AP, Jiménez-Barbero J, Romero A, Roy R, Smetana K, Gabius H-J (2015) A guide into glycosciences: how chemistry, biochemistry and biology cooperate to crack the sugar code. Biochim. Biophys. Acta (BBA) Gen. Subj. 1850:186–235CrossRefGoogle Scholar
  112. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96PubMedCrossRefGoogle Scholar
  113. Stoger E, Fischer R, Moloney M, Ma JK-C (2014) Plant molecular pharming for the treatment of chronic and infectious diseases. Annu Rev Plant Biol 65:743–768PubMedCrossRefGoogle Scholar
  114. Strasser R (2016) Plant protein glycosylation. Glycobiology 26:926–939PubMedPubMedCentralCrossRefGoogle Scholar
  115. Strasser R, Mucha J, Mach L, Altmann F, Wilson I, Glössl J, Steinkellner H (2000) Molecular cloning and functional expression of beta1, 2-xylosyltransferase cDNA from Arabidopsis thaliana. FEBS Lett 472:105–108PubMedCrossRefGoogle Scholar
  116. Sun M, Qian K, Su N, Chang H, Liu J, Shen G, Chen G (2003) Foot-and-mouth disease virus VP1 protein fused with cholera toxin B subunit expressed in Chlamydomonas reinhardtii chloroplast. Biotechnol Lett 25:1087–1092PubMedCrossRefGoogle Scholar
  117. Surzycki R, Greenham K, Kitayama K, Dibal F, Wagner R, Rochaix J-D, Ajam T, Surzycki S (2009) Factors effecting expression of vaccines in microalgae. Biologicals 37:133–138PubMedCrossRefGoogle Scholar
  118. Tran M, Zhou B, Pettersson PL, Gonzalez MJ, Mayfield SP (2009) Synthesis and assembly of a full-length human monoclonal antibody in algal chloroplasts. Biotechnol Bioeng 104:663–673PubMedGoogle Scholar
  119. Tran M, Van C, Barrera DJ, Pettersson PL, Peinado CD, Bui J, Mayfield SP (2013) Production of unique immunotoxin cancer therapeutics in algal chloroplasts. Proc Natl Acad Sci 110:E15–E22PubMedCrossRefGoogle Scholar
  120. Urzica EI, Adler LN, Page MD, Linster CL, Arbing MA, Casero D, Pellegrini M, Merchant SS, Clarke SG (2012) Impact of oxidative stress on ascorbate biosynthesis in Chlamydomonas via regulation of the VTC2 gene encoding a GDP-l-galactose Phosphorylase. J Biol Chem 287:14234–14245PubMedPubMedCentralCrossRefGoogle Scholar
  121. van Beers MMC, Bardor M (2012) Minimizing immunogenicity of biopharmaceuticals by controlling critical quality attributes of proteins. Biotechnol J 7:1473–1484PubMedCrossRefGoogle Scholar
  122. Van Patten SM, Hughes H, Huff MR, Piepenhagen PA, Waire J, Qiu H, Ganesa C, Reczek D, Ward PV, Kutzko JP et al (2007) Effect of mannose chain length on targeting of glucocerebrosidase for enzyme replacement therapy of Gaucher disease. Glycobiology 17:467–478PubMedCrossRefGoogle Scholar
  123. Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Marth JD, Bertozzi CR, Hart GW, Etzler ME (2009a) Symbol nomenclature for glycan representation. Proteomics 9:5398–5399PubMedPubMedCentralCrossRefGoogle Scholar
  124. Varki A, Freeze HH, Gagneux P (2009b) Chapter 19: Evolution of glycan diversity. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor, New YorkGoogle Scholar
  125. Velasquez SM, Ricardi MM, Dorosz JG, Fernandez PV, Nadra AD, Pol-Fachin L, Egelund J, Gille S, Harholt J, Ciancia M et al (2011) O-glycosylated cell wall proteins are essential in root hair growth. Science 332:1401–1403PubMedCrossRefGoogle Scholar
  126. Villarejo A, Burén S, Larsson S, Déjardin A, Monné M, Rudhe C, Karlsson J, Jansson S, Lerouge P, Rolland N et al (2005) Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast. Nat Cell Biol 7:1224–1231PubMedCrossRefGoogle Scholar
  127. Walsh G (2010) Biopharmaceutical benchmarks 2010. Nat Biotechnol 28:917–924PubMedCrossRefGoogle Scholar
  128. Walsh G (2014) Biopharmaceutical benchmarks 2014. Nat Biotechnol 32:992–1000PubMedCrossRefGoogle Scholar
  129. Ward JM (2001) Identification of novel families of membrane proteins from the model plant Arabidopsis thaliana. Bioinformatics 17:560–563PubMedCrossRefGoogle Scholar
  130. Wildt S, Gerngross TU (2005) The humanization of N-glycosylation pathways in yeast. Nat Rev Microbiol 3(2):119–128PubMedCrossRefGoogle Scholar
  131. Witman GB, Carlson K, Berliner J, Rosenbaum JL (1972) Chlamydomonas flagella I. Isolation and electrophoretic analysis of microtubules, matrix, membranes, and mastigonemes. J Cell Biol 54:507–539PubMedPubMedCentralCrossRefGoogle Scholar
  132. Woessner JP, Goodenough UW (1989) Molecular characterization of a zygote wall protein: an extensin-like molecule in Chlamydomonas reinhardtii. Plant Cell 1:901–911PubMedPubMedCentralCrossRefGoogle Scholar
  133. Wong C-H (2005) Protein glycosylation: new challenges and opportunities. J Org Chem 70:4219–4225PubMedCrossRefGoogle Scholar
  134. Zhang Y-H, Robinson DG (1990) Cell-wall synthesis in Chlamydomonas reinhardtii: an immunological study on the wild type and wall-less mutants cw2 and cw15. Planta 180:229–236PubMedCrossRefGoogle Scholar
  135. Zhang Y-H, Lang WC, Robinson DG (1989) In vitro localization of hydroxyproline O-glycosyl transferases in Chlamydomonas reinhardii. Plant Cell Physiol 30:617–622Google Scholar
  136. Zhang L, Luo S, Zhang B (2016) Glycan analysis of therapeutic glycoproteins. MAbs 8:205–215PubMedCrossRefGoogle Scholar
  137. Zhu J (2012) Mammalian cell protein expression for biopharmaceutical production. Biotechnol Adv 30:1158–1170PubMedCrossRefGoogle Scholar
  138. Zhang P, Wang T, Bardor M, Song Z (2013) Deciphering the O-glycomics for the development and production of biopharmaceuticals. Pharm Bioprocess 1:89–104CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Elodie Mathieu-Rivet
    • 1
  • Patrice Lerouge
    • 1
  • Muriel Bardor
    • 1
    • 2
    • 3
  1. 1.Laboratoire Glycobiologie et Matrice Extracellulaire végétaleNormandie Univ, UNIROUENRouenFrance
  2. 2.Institut Universitaire de France (I.U.F.)Paris Cedex 05France
  3. 3.Faculté des sciences et techniques, Laboratoire Glycobiologie et Matrice Extracellulaire végétale (Glyco-MEV) Equipe d’Accueil 4358Institut de Recherche et d’Innovation Biomédicale, Végétale Agronomie Sol Innovation, Université de Rouen, Normandie UniversitéMont-Saint-Aignan CedexFrance

Personalised recommendations