Advertisement

On the Cost of Diagnosis with Disambiguation

  • Loïc Hélouët
  • Hervé Marchand
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10503)

Abstract

Diagnosis consists in deciding from a partial observation of a system whether a fault has occurred. A system is diagnosable if there exists a mechanism (a diagnoser) that accurately detects faults a finite number of steps after their occurrence. In a regular setting, a diagnoser builds an estimation of possible states of the system after an observation to decide if a fault has occurred. This paper addresses diagnosability (deciding whether a system is diagnosable) and its cost for safe Petri nets. We define an energy-like cost model for Petri nets: transitions can consume or restore energy of the system. We then give a partial order representation for state estimation, and extend the cost model and the capacities of diagnosers. Diagnosers are allowed to use additional energy to refine their estimations. In this setting, diagnosability is an energy game, and checking diagnosability under energy constraints is in 2-EXPTIME.

References

  1. 1.
    Basile, F.: Overview of fault diagnosis methods based on petri net models. In: Procedings of IEEE European Control Conference (ECC) (2014)Google Scholar
  2. 2.
    Bertrand, N., Fabre, É., Haar, S., Haddad, S., Hélouët, L.: Active diagnosis for probabilistic systems. In: Muscholl, A. (ed.) FoSSaCS 2014. LNCS, vol. 8412, pp. 29–42. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-54830-7_2 CrossRefGoogle Scholar
  3. 3.
    Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Srba, J.: Infinite runs in weighted timed automata with energy constraints. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 33–47. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-85778-5_4 CrossRefGoogle Scholar
  4. 4.
    Cabasino, M.P., Giua, A., Lafortune, S., Seatzu, C.: Diagnosability analysis of unbounded petri nets. In: Proceedings of CDC 2009, pp. 1267–1272. IEEE (2009)Google Scholar
  5. 5.
    Cassez, F., Tripakis, S.: Fault diagnosis with static and dynamic observers. Fundam. Informaticae 88(4), 497–540 (2008)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Chatterjee, K., Doyen, L.: The complexity of partial-observation parity games. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR 2010. LNCS, vol. 6397, pp. 1–14. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-16242-8_1 CrossRefGoogle Scholar
  7. 7.
    Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Algorithms for omega-regular games with imperfect information. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 287–302. Springer, Heidelberg (2006). doi: 10.1007/11874683_19 CrossRefGoogle Scholar
  8. 8.
    Esparza, J., Römer, S., Vogler, W.: An improvement of Mc Millan’s unfolding algorithm. Formal Methods Syst. Des. 20(3), 285–310 (2002)CrossRefzbMATHGoogle Scholar
  9. 9.
    Fabre, E., Benveniste, A., Haar, S., Jard, C.: Distributed monitoring of concurrent and asynchronous systems. Discret. Event Dyn. Syst. 15(1), 33–84 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Genc, S., Lafortune, S.: Distributed diagnosis of discrete-event systems using petri nets. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp. 316–336. Springer, Heidelberg (2003). doi: 10.1007/3-540-44919-1_21 CrossRefGoogle Scholar
  11. 11.
    Grädel, E., Thomas, W., Wilke, T. (eds.): Automata Logics, and Infinite Games: A Guide to Current Research. LNCS, vol. 2500. Springer, Heidelberg (2002). doi: 10.1007/3-540-36387-4 zbMATHGoogle Scholar
  12. 12.
    Haar, S., Haddad, S., Melliti, T., Schwoon, S.: Optimal constructions for active diagnosis. In: Proceedings of FSTTCS 2013. LIPICS, vol. 24, pp. 527–539 (2013)Google Scholar
  13. 13.
    Hélouët, L., Marchand, H.: On the cost of diagnosis with disambiguation. Technical report, INRIA Rennes (2017). https://hal.inria.fr/hal-01537796
  14. 14.
    Jéron, T., Marchand, H., Pinchinat, S., Cordier, M-O.: Supervision patterns in discrete event systems diagnosis. In: Proceedings of WODES, pp. 262–268 (2006)Google Scholar
  15. 15.
    Jiang, S., Huang, Z., Chandra, V., Kumar, R.: A polynomial time algorithm for diagnosability of discrete event systems. IEEE TAC 46(8), 1318–1321 (2001)zbMATHGoogle Scholar
  16. 16.
    Pocci, M.: Test and diagnosis of discrete event systems using Petri nets. Ph.D. thesis, Univ. Aix-Marseille and Univ. Cagliari (2013)Google Scholar
  17. 17.
    Sampath, M., Sengupta, R., Lafortune, S., Sinaamohideen, K., Teneketzis, D.: Diagnosability of discrete event systems. IEEE TAC 40(9), 1555–1575 (1995)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Thorsley, D., Teneketzis, D.: Diagnosis of cyclic discrete-event systems using active acquisition of information. In: Proceedings of WODES 2006, pp. 248–255 (2006)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.INRIA RennesRennes CedexFrance

Personalised recommendations