Abstract
The Uniformization method computes the probability distribution of a CTMC of maximum rate \(\mu \) at the time a general event with PDF f(x) fires. Usually, f(x) is taken as the deterministic distribution, leading to the computation of the CTMC probability at time t, but Uniformization may be extended to use other distributions. The extended Uniformization does not manipulate directly the distribution, as the whole computation is based on the alpha-factors of f(x), and the maximum CTMC rate \(\mu \). This tool paper describes alphaFactory, a tool that computes the series of alpha-factors of a general distribution function starting from f(x). The main goal of alphaFactory is to provide a freely available implementation for the computation of alpha-factors, to be used inside any extended Uniformization method implementation. Truncation of the infinite series of alpha-factors is determined by a novel error bound, which provides a reliable truncation point also in case of defective PDFs. alphaFactory can be easily integrated into other existing tools, and we show its integration inside the GreatSPN framework, to solve Markov Regenerative Stochastic Petri Nets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Marsan, M.A., Chiola, G.: On Petri nets with deterministic and exponentially distributed firing times. In: Rozenberg, G. (ed.) APN 1986. LNCS, vol. 266, pp. 132–145. Springer, Heidelberg (1987). doi:10.1007/3-540-18086-9_23
Amparore, E.G., Balbo, G., Beccuti, M., Donatelli, S., Franceschinis, G.: 30 years of GreatSPN. In: Fiondella, L., Puliafito, A. (eds.) Principles of Performance and Reliability Modeling and Evaluation. SSRE, pp. 227–254. Springer, Cham (2016). doi:10.1007/978-3-319-30599-8_9
Amparore, E.G., Donatelli, S.: DSPN-tool: a new DSPN and GSPN solver for GreatSPN. In: International Conference on Quantitative Evaluation of Systems, Los Alamitos, CA, USA, pp. 79–80. IEEE Computer Society (2010)
Amparore, E.G., Donatelli, S.: Efficient solution of extended multiple-phased systems. In: 10th ValueTools Conference, pp. 125–132. EAI (2016)
Amparore, E.G., Donatelli, S., Landini, E.: Modelling and evaluation of a control room application. In: van der Aalst, W., Best, E. (eds.) PETRI NETS 2017. LNCS, vol. 10258, pp. 243–263. Springer, Cham (2017). doi:10.1007/978-3-319-57861-3_15
Bobbio, A., Puliafito, A., Scarpa, M., Telek, M.: WebSPN: non-Markovian stochastic Petri net tool. In: 18th Conferecne on Application and Theory of Petri Nets (1997)
Bodenstein, C., Zimmermann, A.: TimeNET optimization environment: batch simulation and heuristic optimization of SCPNs with TimeNET 4.2. In: 8th International Conference on Performance Evaluation Methodologies and Tools, pp. 129–133. ICST (2014)
Bucci, G., Carnevali, L., Ridi, L., Vicario, E.: Oris: a tool for modeling, verification and evaluation of real-time systems. Int. J. Soft. Tools Technol. Transf. 12(5), 391–403 (2010)
Buchholz, P.: Markov matrix market. http://ls4-www.cs.tu-dortmund.de/download/buchholz/struct-matrix-market.html
Carnevali, L., Ridi, L., Vicario, E.: A framework for simulation and symbolic state space analysis of non-Markovian models. In: Flammini, F., Bologna, S., Vittorini, V. (eds.) SAFECOMP 2011. LNCS, vol. 6894, pp. 409–422. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24270-0_30
Choi, H., Kulkarni, V.G., Trivedi, K.S.: Markov regenerative stochastic Petri nets. Perform. Eval. 20(1–3), 337–357 (1994)
Dingle, N.J., Harrison, P.G., Knottenbelt, W.J.: Response time densities in generalised stochastic Petri nets. In: Workshop on Software and Performance, pp. 46–54 (2002)
Fox, B.L., Glynn, P.W.: Computing poisson probabilities. Commun. ACM 31(4), 440–445 (1988)
German, R.: Markov regenerative stochastic Petri nets with general execution policies: supplementary variable analysis and a prototype tool. Perform. Eval. 39(1–4), 165–188 (2000)
German, R.: Performance Analysis of Communication Systems with Non-Markovian Stochastic Petri Nets. Wiley, New York (2000)
Grassmann, W.: Transient solutions in Markovian queueing systems. Comput. Oper. Res. 4(1), 47–53 (1977)
Jansen, D.N.: Understanding Fox and Glynn’s “Computing Poisson Probabilities”. Technical report, Nijmegen: ICIS R11001 (2011)
Kulkarni, V.G.: Modeling and Analysis of Stochastic Systems. Chapman & Hall Ltd., London (1995)
Longo, F., Scarpa, M.: Two-layer symbolic representation for stochastic models with phase-type distributed events. Int. J. Syst. Sci. 46(9), 1540–1571 (2015)
Mura, I., Bondavalli, A., Zang, X., Trivedi, K.S.: Dependability modeling and evaluation of phased mission systems: a DSPN approach. In: International Conference on Dependable Computing for Critical Applications (DCCA), pp. 299–318. IEEE (1999)
Stewart, W.J.: Introduction to the numerical solution of Markov chains. Princeton University Press, Princeton (1994)
Trivedi, K.S., Reibman, A.L., Smith, R.: Transient analysis of Markov and Markov reward models. In: Computer Performance and Reliability 1987, pp. 535–545 (1987)
Zimmermann, A., Freiheit, J., German, R., Hommel, G.: Petri net modelling and performability evaluation with TimeNET 3.0. In: Haverkort, B.R., Bohnenkamp, H.C., Smith, C.U. (eds.) TOOLS 2000. LNCS, vol. 1786, pp. 188–202. Springer, Heidelberg (2000). doi:10.1007/3-540-46429-8_14
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Amparore, E.G., Donatelli, S. (2017). alphaFactory: A Tool for Generating the Alpha Factors of General Distributions. In: Bertrand, N., Bortolussi, L. (eds) Quantitative Evaluation of Systems. QEST 2017. Lecture Notes in Computer Science(), vol 10503. Springer, Cham. https://doi.org/10.1007/978-3-319-66335-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-66335-7_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-66334-0
Online ISBN: 978-3-319-66335-7
eBook Packages: Computer ScienceComputer Science (R0)