Skip to main content

alphaFactory: A Tool for Generating the Alpha Factors of General Distributions

(Tool Paper)

  • Conference paper
  • First Online:
Quantitative Evaluation of Systems (QEST 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10503))

Included in the following conference series:

Abstract

The Uniformization method computes the probability distribution of a CTMC of maximum rate \(\mu \) at the time a general event with PDF f(x) fires. Usually, f(x) is taken as the deterministic distribution, leading to the computation of the CTMC probability at time t, but Uniformization may be extended to use other distributions. The extended Uniformization does not manipulate directly the distribution, as the whole computation is based on the alpha-factors of f(x), and the maximum CTMC rate \(\mu \). This tool paper describes alphaFactory, a tool that computes the series of alpha-factors of a general distribution function starting from f(x). The main goal of alphaFactory is to provide a freely available implementation for the computation of alpha-factors, to be used inside any extended Uniformization method implementation. Truncation of the infinite series of alpha-factors is determined by a novel error bound, which provides a reliable truncation point also in case of defective PDFs. alphaFactory can be easily integrated into other existing tools, and we show its integration inside the GreatSPN framework, to solve Markov Regenerative Stochastic Petri Nets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.boost.org/.

References

  1. Marsan, M.A., Chiola, G.: On Petri nets with deterministic and exponentially distributed firing times. In: Rozenberg, G. (ed.) APN 1986. LNCS, vol. 266, pp. 132–145. Springer, Heidelberg (1987). doi:10.1007/3-540-18086-9_23

    Chapter  Google Scholar 

  2. Amparore, E.G., Balbo, G., Beccuti, M., Donatelli, S., Franceschinis, G.: 30 years of GreatSPN. In: Fiondella, L., Puliafito, A. (eds.) Principles of Performance and Reliability Modeling and Evaluation. SSRE, pp. 227–254. Springer, Cham (2016). doi:10.1007/978-3-319-30599-8_9

    Chapter  Google Scholar 

  3. Amparore, E.G., Donatelli, S.: DSPN-tool: a new DSPN and GSPN solver for GreatSPN. In: International Conference on Quantitative Evaluation of Systems, Los Alamitos, CA, USA, pp. 79–80. IEEE Computer Society (2010)

    Google Scholar 

  4. Amparore, E.G., Donatelli, S.: Efficient solution of extended multiple-phased systems. In: 10th ValueTools Conference, pp. 125–132. EAI (2016)

    Google Scholar 

  5. Amparore, E.G., Donatelli, S., Landini, E.: Modelling and evaluation of a control room application. In: van der Aalst, W., Best, E. (eds.) PETRI NETS 2017. LNCS, vol. 10258, pp. 243–263. Springer, Cham (2017). doi:10.1007/978-3-319-57861-3_15

    Chapter  Google Scholar 

  6. Bobbio, A., Puliafito, A., Scarpa, M., Telek, M.: WebSPN: non-Markovian stochastic Petri net tool. In: 18th Conferecne on Application and Theory of Petri Nets (1997)

    Google Scholar 

  7. Bodenstein, C., Zimmermann, A.: TimeNET optimization environment: batch simulation and heuristic optimization of SCPNs with TimeNET 4.2. In: 8th International Conference on Performance Evaluation Methodologies and Tools, pp. 129–133. ICST (2014)

    Google Scholar 

  8. Bucci, G., Carnevali, L., Ridi, L., Vicario, E.: Oris: a tool for modeling, verification and evaluation of real-time systems. Int. J. Soft. Tools Technol. Transf. 12(5), 391–403 (2010)

    Article  Google Scholar 

  9. Buchholz, P.: Markov matrix market. http://ls4-www.cs.tu-dortmund.de/download/buchholz/struct-matrix-market.html

  10. Carnevali, L., Ridi, L., Vicario, E.: A framework for simulation and symbolic state space analysis of non-Markovian models. In: Flammini, F., Bologna, S., Vittorini, V. (eds.) SAFECOMP 2011. LNCS, vol. 6894, pp. 409–422. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24270-0_30

    Chapter  Google Scholar 

  11. Choi, H., Kulkarni, V.G., Trivedi, K.S.: Markov regenerative stochastic Petri nets. Perform. Eval. 20(1–3), 337–357 (1994)

    Article  MathSciNet  Google Scholar 

  12. Dingle, N.J., Harrison, P.G., Knottenbelt, W.J.: Response time densities in generalised stochastic Petri nets. In: Workshop on Software and Performance, pp. 46–54 (2002)

    Google Scholar 

  13. Fox, B.L., Glynn, P.W.: Computing poisson probabilities. Commun. ACM 31(4), 440–445 (1988)

    Article  MathSciNet  Google Scholar 

  14. German, R.: Markov regenerative stochastic Petri nets with general execution policies: supplementary variable analysis and a prototype tool. Perform. Eval. 39(1–4), 165–188 (2000)

    Article  MATH  Google Scholar 

  15. German, R.: Performance Analysis of Communication Systems with Non-Markovian Stochastic Petri Nets. Wiley, New York (2000)

    MATH  Google Scholar 

  16. Grassmann, W.: Transient solutions in Markovian queueing systems. Comput. Oper. Res. 4(1), 47–53 (1977)

    Article  Google Scholar 

  17. Jansen, D.N.: Understanding Fox and Glynn’s “Computing Poisson Probabilities”. Technical report, Nijmegen: ICIS R11001 (2011)

    Google Scholar 

  18. Kulkarni, V.G.: Modeling and Analysis of Stochastic Systems. Chapman & Hall Ltd., London (1995)

    MATH  Google Scholar 

  19. Longo, F., Scarpa, M.: Two-layer symbolic representation for stochastic models with phase-type distributed events. Int. J. Syst. Sci. 46(9), 1540–1571 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mura, I., Bondavalli, A., Zang, X., Trivedi, K.S.: Dependability modeling and evaluation of phased mission systems: a DSPN approach. In: International Conference on Dependable Computing for Critical Applications (DCCA), pp. 299–318. IEEE (1999)

    Google Scholar 

  21. Stewart, W.J.: Introduction to the numerical solution of Markov chains. Princeton University Press, Princeton (1994)

    MATH  Google Scholar 

  22. Trivedi, K.S., Reibman, A.L., Smith, R.: Transient analysis of Markov and Markov reward models. In: Computer Performance and Reliability 1987, pp. 535–545 (1987)

    Google Scholar 

  23. Zimmermann, A., Freiheit, J., German, R., Hommel, G.: Petri net modelling and performability evaluation with TimeNET 3.0. In: Haverkort, B.R., Bohnenkamp, H.C., Smith, C.U. (eds.) TOOLS 2000. LNCS, vol. 1786, pp. 188–202. Springer, Heidelberg (2000). doi:10.1007/3-540-46429-8_14

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elvio Gilberto Amparore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Amparore, E.G., Donatelli, S. (2017). alphaFactory: A Tool for Generating the Alpha Factors of General Distributions. In: Bertrand, N., Bortolussi, L. (eds) Quantitative Evaluation of Systems. QEST 2017. Lecture Notes in Computer Science(), vol 10503. Springer, Cham. https://doi.org/10.1007/978-3-319-66335-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66335-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66334-0

  • Online ISBN: 978-3-319-66335-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics