Skip to main content

Remote Sensing Data Fusion: Guided Filter-Based Hyperspectral Pansharpening and Graph-Based Feature-Level Fusion

  • Chapter
  • First Online:
Mathematical Models for Remote Sensing Image Processing

Part of the book series: Signals and Communication Technology ((SCT))

  • 2237 Accesses

Abstract

Recent advances in remote sensing technology have led to an increased availability of a multitude of satellite and airborne data sources, with increasing resolution. The term resolution here includes spatial and spectral resolutions. Additionally, at lower altitudes, airplanes and Unmanned Aerial Vehicles (UAVs) can deliver very high-resolution data from targeted locations. Remote sensing acquisitions employ both passive (optical and thermal range, multispectral, and hyperspectral) and active devices such as Synthetic Aperture Radar (SAR) and Light Detection and Ranging (LiDAR). Diverse information of the Earth’s surface can be obtained from these multiple imaging sources. Optical and SAR characterize the surface of the ground, LiDAR provides the elevation, while multispectral and hyperspectral sensors reveal the material composition. These multisource remote sensing images, once combined/fused together, provide a more comprehensive interpretation of land cover/use (urban and climatic changes), natural disasters (floods, hurricanes, and earthquakes), and potential exploitation (oil fields and minerals). However, automatic interpretation of remote sensing data remains challenging. Two fundamental problems in data fusion of multisource remote sensing images are (1) differences in resolution hamper the ability to fastly interpret multisource remote sensing images and (2) there is no clear methodology yet on combining the diverse information of different data sources. In this chapter, we will introduce our recent solutions for these two problems, with an introduction on signal-level fusion (hyperspectral image pansharpening) first, followed by feature-level fusion (graph-based fusion model for multisource data classification).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.grss-ieee.org/community/technical-committees/data-fusion/2014-ieee-grss-data-fusion-contest/.

  2. 2.

    http://www.grss-ieee.org/community/technical-committees/data-fusion/2013-ieee-grss-data-fusion-contest/.

  3. 3.

    With faster algorithms (e.g., K-D trees) than direct nearest neighbours searching, the complexity can be reduced. More details on efficient representation and search techniques for large data sets can be found in Chap. 2.

References

  1. Hall, L., Llinas, J.: An introduction to multisensor data fusion. Proc. IEEE 85, 6–23 (1997)

    Article  Google Scholar 

  2. Pohl, C., Van Genderen, J.L.: Multisensor image fusion in remote sensing: concepts, methods and applications. Int. J. Remote Sens. 19, 823–854 (1998)

    Article  Google Scholar 

  3. Zhang, J.: Multi-source remote sensing data fusion: status and trends. Int. J. Image Data Fus. 1(1), 5–24 (2010)

    Article  Google Scholar 

  4. Gamba, P.: Image and data fusion in remote sensing of urban areas: status issues and research trends. Int. J. Image Data Fus. 5(1), 2–12 (2014)

    Article  Google Scholar 

  5. Dalla Mura, M., Prasad, S., Pacifici, F., Gamba, P., Chanussot, J., Benediktsson, J.: Challenges and opportunities of multimodality and data fusion in remote sensing. Proc. IEEE 103(9), 1585–1601 (2015)

    Article  Google Scholar 

  6. Lahat, D., Adali, T., Jutten, C.: Multimodal data fusion: an overview of methods, challenges and prospects. Proc. IEEE 103(9), 1449–1477 (2015)

    Article  Google Scholar 

  7. Gomez-Chova, L., Tuia, D., Moser, G., Camps-Valls, G.: Multimodal classification of remote sensing images: a review and future directions. Proc. IEEE 103(9), 1560–1584 (2015)

    Article  Google Scholar 

  8. Luo, R.C., Kay, M.G.: A tutorial on multisensor integration and fusion. In:16 Annual Conference of IEEE Industrial Electronics Society, 1990, pp. 707–722 (1990)

    Google Scholar 

  9. Loncan, L., Almeida, L.B., Bioucas Dias, J., et al.: Hyperspectral pansharpening: a review. IEEE Geosci. Remote Sens. Mag. 3(3), 27–46 (2015)

    Article  Google Scholar 

  10. Carper, W., Lillesand, T.M., Kiefer, P.W.: The use of intensity- hue-saturation transformations for merging SPOT panchromatic and multispectral image data. Photogramm. Eng. Remote Sens. 56(4), 459–467 (1990)

    Google Scholar 

  11. Tu, T.M., Su, S.C., Shyu, H.C., Huang, P.S.: A new look at IHS-like image fusion methods. Inf. Fus. 2(3), 117–186 (2001)

    Article  Google Scholar 

  12. Shettigara, V.: A generalized component substitution technique for spatial enhancement of multispectral images using a higher resolution data set. Photogramm. Eng. Remote Sens. 58(5), 561–567 (1992)

    Google Scholar 

  13. Shah, V., Younan, N., King, R.: An efficient pan-sharpening method via a combined adaptive PCA approach and contourlets. IEEE Trans. Geosci. Remote Sens. 46(5), 1323–1335 (2008)

    Article  Google Scholar 

  14. Mallat, S.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)

    Article  MATH  Google Scholar 

  15. Nason, G.P., Silverman, B.W.: The stationary wavelet transform and some statistical applications in Wavelets and Statistics. In: A. Antoniadis, G.Oppenheim (ed.), vol. 103, pp. 281–299 Springer, New York (1995)

    Google Scholar 

  16. Burt, P.J., Adelson, E.H.: The Laplacian pyramid as a compact image code. IEEE Trans. Commun. 31(4), 532–540 (1983)

    Article  Google Scholar 

  17. Do, M.N., Vetterli, M.: The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans. Image Process. 14(12), 2091–2106 (2005)

    Article  Google Scholar 

  18. Starck, J., Murtagh, F.: The undecimated wavelet decomposition and its reconstruction. IEEE Trans. Image Process. 16(2), 297–309 (2007)

    Article  MathSciNet  Google Scholar 

  19. Ballester, C., Caselles, V., Igual, L., et al.: A variational model for P\(+\)XS image fusion. Int. J. Comput. Vis. 5969(1), 43–58 (2006)

    Article  Google Scholar 

  20. Palsson, F., Sveinsson, J., Ulfarsson, M., Benediktsson, J.: A new pansharpening algorithm based on total variation. IEEE Geosci. Remote Sens. Lett. 11(1), 318–322 (2014)

    Article  Google Scholar 

  21. He, X., Condat, L., Bioucas Dias, J., et al.: A new pansharpening method based on spatial and spectral sparsity priors. IEEE Trans. Image Process. 23(9), 4160–4174 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Moeller, M., Wittman, T., Bertozzi, A.: A variational approach to hyperspectral image fusion. In: SPIE Defense, Security, and Sensing (2009)

    Google Scholar 

  23. Vivone, G., Alparone, L., Chanussot, J., et al.: Multi-resolution analysis and component substitution techniques for hyperspectral pansharpening. In: 2014 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2649–2652 (2014)

    Google Scholar 

  24. Yokoya, N., Yairi, T., Iwasaki, A.: Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion. IEEE Trans. Geosci. Remote Sens. 50(2), 528–537 (2012)

    Article  Google Scholar 

  25. Wei, Q., Dobigeon, N., Tourneret, J.Y.: Bayesian fusion of multi- band images. IEEE J. Select. Top. Signal Process. 9(6), 1117–1127 (2015)

    Article  Google Scholar 

  26. Simoes, M., Bioucas-Dias, J., Almeida, L., Chanussot, J.: A convex formulation for hyperspectral image superresolution via subspace-based regularization. IEEE Trans. Geosci. Remote Sens. 53(6), 3373–3387 (2015)

    Article  Google Scholar 

  27. Wei, Q., Bioucas-Dias, J., Dobigeon, N., Tourneret, J.Y.: Hyperspectral and multispectral image fusion based on a sparse representation. IEEE Trans. Geosci. Remote Sens. 53(7), 3658–3668 (2015)

    Article  Google Scholar 

  28. Liao, W., Huang, X., Coillie, F., et al.: Processing of Multiresolution Thermal Hyperspectral and Digital Color Data: Outcome of the 2014 IEEE GRSS Data Fusion Contest. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 8(6), 2984–2996 (2015)

    Google Scholar 

  29. Liao, W., Huang, X., Coillie, F., Guy, T., Scheunders, P., Pizurica, A., Philips, W. Two-stage fusion of thermal hyperspectral and visible RGB image by PCA and Guided filter. In: 7th workshop on hyperspectral image and signal processing: evolution in remote sensing (WHISPERS 2015), Tokyo, Japan (2015)

    Google Scholar 

  30. Zhu, X., Grohnfeldt, C., Bamler, R.: Exploiting joint sparsity for pan-sharpening: the J-sparse FI algorithm. IEEE Trans. Geosci. Remote Sens. 54(5), 2664–2681 (2016)

    Article  Google Scholar 

  31. He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1397–1409 (2013)

    Article  Google Scholar 

  32. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2, 121–167 (1998)

    Article  Google Scholar 

  33. Chang, C.C., Lin, C.J.: (2001). LIBSVM: A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol., 2(3), 27:1–27:27, 2011. http://www.csie.ntu.edu.tw/~cjlin/libsvm

  34. Fauvel, M., Benediktsson, J.A., Chanussot, J., Sveinsson, J.R.: Spectral and spatial classification of hyperspectral data using SVMs and morphological profile. IEEE Trans. Geosci. Remote Sens. 46(11), 3804–3814 (2008)

    Article  Google Scholar 

  35. Swatantrana, A., Dubayaha, R., Robertsb, D., Hoftona, M., Blairc, J.B.: Mapping biomass and stress in the Sierra Nevada using lidar and hyperspectral data fusion. Remote Sens. Environ. 115(11), 2917–2930 (2011)

    Article  Google Scholar 

  36. Koetz, B., Sun, G., Morsdorf, F., Ranson, K.J., et al.: Fusion of imaging spectrometer and LIDAR data over combined radiative transfer models for forest canopy characterization. Remote Sens. Environ. 106(4), 449–459 (2007)

    Article  Google Scholar 

  37. Dalponte, M., Bruzzone, L., Gianelle, D.: Fusion of Hyperspectral and LIDAR Remote Sensing Data for Classification of Complex Forest Areas. IEEE Trans. Geosci. Remote Sens. 46(5), 1416–1427 (2008)

    Article  Google Scholar 

  38. Naidooa, L., Choa, M.A., Mathieua, R., Asnerb, G.: Classification of savanna tree species, in the Greater Kruger National Park region, by integrating hyperspectral and LiDAR data in a Random Forest data mining environment. ISPRS J. Photogramm. Remote Sens. 69, 167–179 (2012)

    Article  Google Scholar 

  39. Pedergnana, M., Reddy Marpu, P., Dalla Mura, M., Benediktsson, J.A., Bruzzone, L.: Classification of remote sensing optical and LiDAR data using extended attribute profiles. IEEE J. Select. Top. Signal Process. 6(7), 856–865 (2012)

    Article  Google Scholar 

  40. Khodadadzadeh, M., Li, J., Prasad, M., Plaza, A.: Fusion of Hyperspectral and LiDAR Remote Sensing Data Using Multiple Feature Learning. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 8(6), 2971–2983 (2015)

    Google Scholar 

  41. Zhang, Y., Prasad, S.: Multisource geospatial data fusion via local joint sparse representation. IEEE Trans. Geosci. Remote Sens. 54(6), 3265–3276 (2016)

    Article  Google Scholar 

  42. Liao, W., Bellens, R., Pizurica, A., Gautama, S., Philips, W.: Generalized graph-based fusion of hyperspectral and LiDAR data using morphological features. IEEE Geosci. Remote Sens. Lett. 12(3), 552–556 (2015)

    Article  Google Scholar 

  43. Camps-Valls, G., Gomez-Chova, L., Munoz-Mari, J., Vila-Frances, J., Calpe-Maravilla, J.: Composite kernels for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 3(1), 93–97 (2006)

    Article  Google Scholar 

  44. Fauvel, M., Chanussot, J., Benediktsson, J.: A spatial-spectral kernel-based approach for the classification of remote-sensing images. Pattern Recognit. 45(1), 381–392 (2012)

    Article  Google Scholar 

  45. Li, J., Marpu, P.R., Plaza, A., Bioucas-Dias, J.M., Benediktsson, J.: Generalized composite Kernel framework for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 51(9), 4816–4829 (2013)

    Article  Google Scholar 

  46. Voisin, A., Krylov, V.A., Moser, G., Serpico, S.B., Zerubia, J.: Supervised Classification of Multisensor and Multiresolution Remote Sensing Images with A Hierarchical Copula-based Approach. IEEE Trans. Geosci. Remote Sens. 52(6), 3346–3358 (2014)

    Article  Google Scholar 

  47. Tuia, D., Volpi, M., Trolliet, M., Camps-Valls, G.: Semisupervised manifold alignment of multimodal remote sensing images. IEEE Trans. Geosci. Remote Sens. 52(12), 7708–7720 (2014)

    Article  Google Scholar 

  48. Fang, L., Li, S., Kang, X., Benediktsson, J.: Spectral-spatial hyperspectral image classification via multiscale adaptive sparse representation. IEEE Trans. Geosci. Remote Sens. 52(12), 7738–7749 (2014)

    Article  Google Scholar 

  49. Gunatilaka, A.H., Baertlein, B.A.: Feature-level and decision-level fusion of noncoincidently sampled sensors for land mine detection. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 577–589 (2001)

    Article  Google Scholar 

  50. Calhoun, V.D., Adali, T., Pearlson, G.D., Kiehl, K.A.: Neuronal chronometry of target detection: fusion of hemodynamic and event-related potential data. NeuroImage 30(2), 544–553 (2006)

    Article  Google Scholar 

  51. Calhoun, V.D., Adali, T., Liu, J.: A feature-based approach to combine functional MRI, structural MRI, and EEG brain imaging data. In: 2006 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), New York (2006)

    Google Scholar 

  52. Correa, N.M., Li, Y.O., Adali, T., Calhoun, V.D.: Canonical correlation analysis for feature-based fusion of biomedical imaging modalities and its application to detection of associative networks in schizophrenia. IEEE J. Select. Top. Signal Process. 2(6), 998–1007 (2008)

    Article  Google Scholar 

  53. Jagadeesan, A., Thillaikkarasi, T., Duraiswamy, K.: Protected bio-cryptography key invention from multimodal modalities: feature level fusion of fingerprint and Iris. Eur. J. Sci. Res. 49(4), 484–502 (2011)

    Google Scholar 

  54. Conti, V., Militello, C., Sorbello, F., Vitabile, S.: A frequency-based approach for features fusion in fingerprint and iris multi-modal biometric identification systems. IEEE Trans. Syst. Man Cybern. C 40(4), 384–395 (2010)

    Article  Google Scholar 

  55. Nagar, A., Nandakumar, K., Jain, A.K.: Multibiometric cryptosystems based on feature-level fusion. IEEE Trans. Inf. Forensics Secur. 7(1), 255–268 (2012)

    Article  Google Scholar 

  56. Camps-Valls, G., Gomez-Chova, L., et al.: Kernel-based framework for multitemporal and multisource remote sensing data classification and change detection. IEEE Trans. Geosci. Remote Sens. 46(6), 1822–1835 (2008)

    Article  Google Scholar 

  57. Tuia, D., Ratle, F., Pozdnoukhov, A., Camps-Valls, G.: Multi-source composite kernels for urban image classification. IEEE Geosci. Remote Sens. Lett. 7(1), 88–92 (2010)

    Article  Google Scholar 

  58. Tuia, D., Camps-Valls, G., Matasci, G., Kanevski, M.: Learning relevant image features with multiple kernel classification. IEEE Trans. Geosci. Remote Sens. 48(10), 3780–3791 (2010)

    Article  Google Scholar 

  59. Gomez-Chova, L., Camps-Valls, G., Bruzzone, L., Calpe-Maravilla, J.: Mean map kernel methods for semisupervised cloud classification. IEEE Trans. Geosci. Remote Sens. 48(1), 207–220 (2010)

    Article  Google Scholar 

  60. Volpi, M., Camps-Valls, G., Tuia, D.: Spectral alignment of cross-sensor images with automated kernel canonical correlation analysis. ISPRS J. Photogramm. Remote Sens. 107, 50–63 (2015)

    Article  Google Scholar 

  61. Dalla Mura, M., Benediktsson, J.A., Waske, B., Bruzzone, L.: Extended profiles with morphological attribute filters for the analysis of hyperspectral data. Int. J. Remote Sens. 31(22), 5975–5991 (2010)

    Article  Google Scholar 

  62. Dalla Mura, M., Villa, A., Benediktsson, J.A., Chanussot, J., Bruzzone, L.: Classification of hyperspectral images by using extended morphological attribute profiles and independent component analysis. IEEE Geosci. Remote Sens. Lett. 8(3), 541–545 (2011)

    Article  Google Scholar 

  63. Liao, W., Dalla Mura, M., Chanussot, J., Pizurica, A.: Fusion of Spectral and Spatial Information for Classification of Hyperspectral Remote Sensed Imagery by Local Graph. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 9(2), 583–594 (2016)

    Google Scholar 

  64. Blaschke, T.: Object based Image Analysis for Remote Sensing. ISPRS J. Photogramm. Remote Sens. 65(1), 2–16 (2010)

    Article  Google Scholar 

  65. Soille, P.: Morphological Image Analysis, Principles and Applications, 2nd edn. Springer, Berlin (2003)

    MATH  Google Scholar 

  66. Benediktsson, J., Palmason, J., Sveinsson, J.R.: Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans. Geosci. Remote Sens. 43(3), 480–491 (2005)

    Article  Google Scholar 

  67. Dalla Mura, M., Benediktsson, J., Waske, B., Bruzzone, L.: Morphological attribute profiles for the analysis of very high resolution images. IEEE Trans. Geosci. Remote Sens. 48(10), 3747–3762 (2010)

    Article  Google Scholar 

  68. Huang, X., Liu, H., Zhang, L.: Spatiotemporal detection and analysis of urban villages in mega city regions of china using high-resolution remotely sensed imagery. IEEE Trans. Geosci. Remote Sens. 53(7), 3639–3657 (2015)

    Article  Google Scholar 

  69. Bruzzone, L., Bovolo, F.: A novel framework for the design of change-detection systems for very-high-resolution remote sensing images. Proc. IEEE 101(3), 609–630 (2013)

    Article  Google Scholar 

  70. Braun, A.C., Rojas, C., et al.: Design of a Spectral-Spatial Pattern Recognition Framework for Risk Assessments Using Landsat Data-A Case Study in Chile. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 7(3), 917–928 (2014)

    Google Scholar 

  71. Liao, W., Bellens, R., Pižurica, A., Philips, W., Pi, Y.: Classification of Hyperspectral Data Over Urban Areas Using Directional Morphological Profiles and Semi-Supervised Feature Extraction. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 5(4), 1177–1190 (2012)

    Google Scholar 

  72. Bellens, R., Gautama, S., Martinez-Fonte, L., Philips, W., Chan, J.C.-W., Canters, F.: Improved classification of VHR images of urban areas using directional morphological profiles. IEEE Trans. Geosci. Remote Sens. 46(10), 2803–2812 (2008)

    Article  Google Scholar 

  73. Scholkopf, B., Smola, A.J., Muller, K.R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10, 1299–1319 (1998)

    Article  Google Scholar 

  74. Belkin, M., Niyogi, P.: Laplacia Eigenmaps and Spectral Techniques for Embedding and Clustering. In: Advances in Neural Information Processing Systems 14, 585–591, MIT Press, British Columbia, Canada (2002)

    Google Scholar 

  75. He, X.F., Niyogi, P.: Locality preserving projections. In: Advances in Neural Information Processing Systems 16, pp. 153–160. MIT Press, Cambridge (2004)

    Google Scholar 

  76. Debes, C., Merentitis, A., Heremans, R., et al.: Hyperspectral and LiDAR Data Fusion: Outcome of the 2013 GRSS Data Fusion Contest. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 7(6), 2405–2418 (2014)

    Google Scholar 

  77. Kuo, B.C., Landgrebe, D.A.: Nonparametric weighted feature extraction for classification. IEEE Trans. Geosci. Remote Sens. 42(5), 1096–1105 (2004)

    Article  Google Scholar 

  78. Tarabalka, Y., Benediktsson, J.A., Chanussot, J.: Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques. IEEE Trans. Geosci. Remote Sens. 47(8), 2973–2987 (2009)

    Article  Google Scholar 

  79. Li, J., Bioucas-Dias, J.M., Plaza, A.: Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random field. IEEE Trans. Geosci. Remote Sens. 50(3), 809–823 (2012)

    Article  Google Scholar 

  80. Camps-Valls, G., Shervashidze, N., Borgwardt, K.M.: Spatio-spectral remote sensing image classification with graph Kernels. IEEE Geosci. Remote Sens. Lett. 7(4), 741–745 (2010)

    Article  Google Scholar 

  81. Chen, G., Qian, S.E.: Dimensionality reduction of hyperspectral imagery using improved locally linear embedding. J. Appl. Remote Sens. 1, 1–10 (2007)

    Article  Google Scholar 

  82. Jimenez, M.D., Prelcic, N.: Linear boundary extensions for einite length signals and paraunitary two-channel filterbanks. IEEE Trans. Signal Process 52(11), 3213–3226 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  83. Chen, G., Bui, T.D., Krzyzak, A.: Image denoising with neighbour dependency and customized wavelet and threshold. Pattern Recogn. 38(1), 115–124 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Telops Inc. (Québec, Canada), the Hyperspectral Image Analysis group and the NSF Funded Center for Airborne Laser Mapping (NCALM) at the University of Houston, and Prof. Paolo Gamba from the University of Pavia (Italy) for providing the data sets used in this Chapter. This work was supported by the Fund for Scientific Research in Flanders (FWO) project G037115N “Data Fusion for Image Analysis in Remote Sensing.” Wenzhi Liao is a postdoctoral fellow of the Research Foundation Flanders (FWO-Vlaanderen) and acknowledges its support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenzhi Liao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liao, W., Chanussot, J., Philips, W. (2018). Remote Sensing Data Fusion: Guided Filter-Based Hyperspectral Pansharpening and Graph-Based Feature-Level Fusion. In: Moser, G., Zerubia, J. (eds) Mathematical Models for Remote Sensing Image Processing. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-66330-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66330-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66328-9

  • Online ISBN: 978-3-319-66330-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics