Decomposing Polynomial Sets Simultaneously into Gröbner Bases and Normal Triangular Sets

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10490)


In this paper we focus on the algorithms and their implementations for decomposing an arbitrary polynomial set simultaneously into pairs of lexicographic Gröbner bases and normal triangular sets with inherent connections in between and associated zero relationship with the polynomial set. In particular, a method by temporarily changing the variable orderings to handle the failure of the variable ordering assumption is proposed to ensure splitting needed for characteristic decomposition. Experimental results of our implementations for (strong) characteristic decomposition with comparisons with available implementations of triangular decomposition are also reported.


Normal triangular set Gröbner basis Characteristic decomposition Variable ordering 



The authors would like to thank the reviewers for their detailed comments which have led to effective improvements on this paper.


  1. 1.
    Alvandi, P., Chen, C., Marcus, S., Moreno Maza, M., Schost, É., Vrbik, P.: Doing algebraic geometry with the RegularChains library. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 472–479. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-44199-2_71 Google Scholar
  2. 2.
    Aubry, P., Lazard, D., Moreno Maza, M.: On the theories of triangular sets. J. Symb. Comput. 28(1–2), 105–124 (1999)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Aubry, P., Moreno Maza, M.: Triangular sets for solving polynomial systems: a comparative implementation of four methods. J. Symb. Comput. 28(1), 125–154 (1999)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bächler, T., Gerdt, V., Lange-Hegermann, M., Robertz, D.: Algorithmic Thomas decomposition of algebraic and differential systems. J. Symb. Comput. 47(10), 1233–1266 (2012)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Becker, T., Weispfenning, V., Kredel, H.: Gröbner Bases: A Computational Approach to Commutative Algebra. Graduate Texts in Mathematics. Springer, New York (1993)CrossRefMATHGoogle Scholar
  6. 6.
    Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenrings nach einem nulldimensionalen Polynomideal. Ph.D. thesis, Universität Innsbruck, Austria (1965)Google Scholar
  7. 7.
    Chen, C., Golubitsky, O., Lemaire, F., Moreno Maza, M., Pan, W.: Comprehensive triangular decomposition. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2007. LNCS, vol. 4770, pp. 73–101. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-75187-8_7 CrossRefGoogle Scholar
  8. 8.
    Chen, C., Moreno Maza, M.: Algorithms for computing triangular decompositions of polynomial systems. J. Symb. Comput. 47(6), 610–642 (2012)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in Mathematics. Springer, New York (1997)MATHGoogle Scholar
  10. 10.
    Dahan, X.: On lexicographic Gröbner bases of radical ideals in dimension zero: interpolation and structure. Preprint at arXiv:1207.3887 (2012)
  11. 11.
    Faugère, J.-C.: FGb: a library for computing Gröbner bases. In: Fukuda, K., Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp. 84–87. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15582-6_17 CrossRefGoogle Scholar
  12. 12.
    Faugère, J.-C., Gianni, P., Lazard, D., Mora, T.: Efficient computation of zero-dimensional Gröbner bases by change of ordering. J. Symb. Comput. 16(4), 329–344 (1993)CrossRefMATHGoogle Scholar
  13. 13.
    Gao, S., Volny, F., Wang, M.: A new framework for computing Gröbner bases. Math. Comput. 85(297), 449–465 (2016)CrossRefMATHGoogle Scholar
  14. 14.
    Gao, X.-S., Chou, S.-C.: Solving parametric algebraic systems. In: Proceedings of ISSAC 1992, pp. 335–341. ACM Press (1992)Google Scholar
  15. 15.
    Gianni, P., Trager, B., Zacharias, G.: Gröbner bases and primary decomposition of polynomial ideals. J. Symb. Comput. 6(2), 149–167 (1988)CrossRefMATHGoogle Scholar
  16. 16.
    Kalkbrenner, M.: A generalized Euclidean algorithm for computing triangular representations of algebraic varieties. J. Symb. Comput. 15(2), 143–167 (1993)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lazard, D.: Ideal bases and primary decomposition: case of two variables. J. Symb. Comput. 1(3), 261–270 (1985)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Lazard, D.: A new method for solving algebraic systems of positive dimension. Discrete Appl. Math. 33(1–3), 147–160 (1991)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Lazard, D.: Solving zero-dimensional algebraic systems. J. Symb. Comput. 13(2), 117–131 (1992)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Lemaire, F., Moreno Maza, M., Xie, Y.: The RegularChains library in Maple 10. In: Kotsireas, I. (ed.) Maple Conference 2005, pp. 355–368. Maplesoft, Waterloo (2005)Google Scholar
  21. 21.
    Li, B., Wang, D.: An algorithm for transforming regular chain into normal chain. In: Kapur, D. (ed.) ASCM 2007. LNCS, vol. 5081, pp. 236–245. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-87827-8_20 CrossRefGoogle Scholar
  22. 22.
    Marinari, M.G., Mora, T.: A remark on a remark by Macaulay or enhancing Lazard structural theorem. Bull. Iran. Math. Soc. 29(1), 1–45 (2003)MathSciNetMATHGoogle Scholar
  23. 23.
    Mou, C., Wang, D., Li, X.: Decomposing polynomial sets into simple sets over finite fields: the positive-dimensional case. Theoret. Comput. Sci. 468, 102–113 (2013)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Ritt, J.F.: Differential Algebra. American Mathematical Society, New York (1950)CrossRefMATHGoogle Scholar
  25. 25.
    Shimoyama, T., Yokoyama, K.: Localization and primary decomposition of polynomial ideals. J. Symb. Comput. 22(3), 247–277 (1996)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Wang, D.: Decomposing polynomial systems into simple systems. J. Symb. Comput. 25(3), 295–314 (1998)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Wang, D.: Computing triangular systems and regular systems. J. Symb. Comput. 30(2), 221–236 (2000)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Wang, D.: Elimination Methods. Springer, Wien (2001)CrossRefMATHGoogle Scholar
  29. 29.
    Wang, D.: Elimination Practice: Software Tools and Applications. Imperial College Press, London (2004)CrossRefMATHGoogle Scholar
  30. 30.
    Wang, D.: On the connection between Ritt characteristic sets and Buchberger-Gröbner bases. Math. Comput. Sci. 10, 479–492 (2016)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Wang, D., Dong, R., Mou, C.: Decomposition of polynomial sets into characteristic pairs. arXiv:1702.08664 (2017)
  32. 32.
    Wang, D., Zhang, Y.: An algorithm for decomposing a polynomial system into normal ascending sets. Sci. China Ser. A 50(10), 1441–1450 (2007)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Weispfenning, V.: Comprehensive Gröbner bases. J. Symb. Comput. 14(1), 1–29 (1992)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Wu, W.-T.: Basic principles of mechanical theorem proving in elementary geometries. J. Autom. Reason. 2(3), 221–252 (1986)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.LMIB–SKLSDE–School of Mathematics and Systems ScienceBeihang UniversityBeijingChina

Personalised recommendations