Advertisement

Decomposing Polynomial Sets Simultaneously into Gröbner Bases and Normal Triangular Sets

  • Rina Dong
  • Chenqi Mou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10490)

Abstract

In this paper we focus on the algorithms and their implementations for decomposing an arbitrary polynomial set simultaneously into pairs of lexicographic Gröbner bases and normal triangular sets with inherent connections in between and associated zero relationship with the polynomial set. In particular, a method by temporarily changing the variable orderings to handle the failure of the variable ordering assumption is proposed to ensure splitting needed for characteristic decomposition. Experimental results of our implementations for (strong) characteristic decomposition with comparisons with available implementations of triangular decomposition are also reported.

Keywords

Normal triangular set Gröbner basis Characteristic decomposition Variable ordering 

Notes

Acknowledgements

The authors would like to thank the reviewers for their detailed comments which have led to effective improvements on this paper.

References

  1. 1.
    Alvandi, P., Chen, C., Marcus, S., Moreno Maza, M., Schost, É., Vrbik, P.: Doing algebraic geometry with the RegularChains library. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 472–479. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-44199-2_71 Google Scholar
  2. 2.
    Aubry, P., Lazard, D., Moreno Maza, M.: On the theories of triangular sets. J. Symb. Comput. 28(1–2), 105–124 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Aubry, P., Moreno Maza, M.: Triangular sets for solving polynomial systems: a comparative implementation of four methods. J. Symb. Comput. 28(1), 125–154 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bächler, T., Gerdt, V., Lange-Hegermann, M., Robertz, D.: Algorithmic Thomas decomposition of algebraic and differential systems. J. Symb. Comput. 47(10), 1233–1266 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Becker, T., Weispfenning, V., Kredel, H.: Gröbner Bases: A Computational Approach to Commutative Algebra. Graduate Texts in Mathematics. Springer, New York (1993)CrossRefzbMATHGoogle Scholar
  6. 6.
    Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenrings nach einem nulldimensionalen Polynomideal. Ph.D. thesis, Universität Innsbruck, Austria (1965)Google Scholar
  7. 7.
    Chen, C., Golubitsky, O., Lemaire, F., Moreno Maza, M., Pan, W.: Comprehensive triangular decomposition. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2007. LNCS, vol. 4770, pp. 73–101. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-75187-8_7 CrossRefGoogle Scholar
  8. 8.
    Chen, C., Moreno Maza, M.: Algorithms for computing triangular decompositions of polynomial systems. J. Symb. Comput. 47(6), 610–642 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in Mathematics. Springer, New York (1997)zbMATHGoogle Scholar
  10. 10.
    Dahan, X.: On lexicographic Gröbner bases of radical ideals in dimension zero: interpolation and structure. Preprint at arXiv:1207.3887 (2012)
  11. 11.
    Faugère, J.-C.: FGb: a library for computing Gröbner bases. In: Fukuda, K., Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp. 84–87. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15582-6_17 CrossRefGoogle Scholar
  12. 12.
    Faugère, J.-C., Gianni, P., Lazard, D., Mora, T.: Efficient computation of zero-dimensional Gröbner bases by change of ordering. J. Symb. Comput. 16(4), 329–344 (1993)CrossRefzbMATHGoogle Scholar
  13. 13.
    Gao, S., Volny, F., Wang, M.: A new framework for computing Gröbner bases. Math. Comput. 85(297), 449–465 (2016)CrossRefzbMATHGoogle Scholar
  14. 14.
    Gao, X.-S., Chou, S.-C.: Solving parametric algebraic systems. In: Proceedings of ISSAC 1992, pp. 335–341. ACM Press (1992)Google Scholar
  15. 15.
    Gianni, P., Trager, B., Zacharias, G.: Gröbner bases and primary decomposition of polynomial ideals. J. Symb. Comput. 6(2), 149–167 (1988)CrossRefzbMATHGoogle Scholar
  16. 16.
    Kalkbrenner, M.: A generalized Euclidean algorithm for computing triangular representations of algebraic varieties. J. Symb. Comput. 15(2), 143–167 (1993)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lazard, D.: Ideal bases and primary decomposition: case of two variables. J. Symb. Comput. 1(3), 261–270 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Lazard, D.: A new method for solving algebraic systems of positive dimension. Discrete Appl. Math. 33(1–3), 147–160 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Lazard, D.: Solving zero-dimensional algebraic systems. J. Symb. Comput. 13(2), 117–131 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lemaire, F., Moreno Maza, M., Xie, Y.: The RegularChains library in Maple 10. In: Kotsireas, I. (ed.) Maple Conference 2005, pp. 355–368. Maplesoft, Waterloo (2005)Google Scholar
  21. 21.
    Li, B., Wang, D.: An algorithm for transforming regular chain into normal chain. In: Kapur, D. (ed.) ASCM 2007. LNCS, vol. 5081, pp. 236–245. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-87827-8_20 CrossRefGoogle Scholar
  22. 22.
    Marinari, M.G., Mora, T.: A remark on a remark by Macaulay or enhancing Lazard structural theorem. Bull. Iran. Math. Soc. 29(1), 1–45 (2003)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Mou, C., Wang, D., Li, X.: Decomposing polynomial sets into simple sets over finite fields: the positive-dimensional case. Theoret. Comput. Sci. 468, 102–113 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Ritt, J.F.: Differential Algebra. American Mathematical Society, New York (1950)CrossRefzbMATHGoogle Scholar
  25. 25.
    Shimoyama, T., Yokoyama, K.: Localization and primary decomposition of polynomial ideals. J. Symb. Comput. 22(3), 247–277 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Wang, D.: Decomposing polynomial systems into simple systems. J. Symb. Comput. 25(3), 295–314 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Wang, D.: Computing triangular systems and regular systems. J. Symb. Comput. 30(2), 221–236 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Wang, D.: Elimination Methods. Springer, Wien (2001)CrossRefzbMATHGoogle Scholar
  29. 29.
    Wang, D.: Elimination Practice: Software Tools and Applications. Imperial College Press, London (2004)CrossRefzbMATHGoogle Scholar
  30. 30.
    Wang, D.: On the connection between Ritt characteristic sets and Buchberger-Gröbner bases. Math. Comput. Sci. 10, 479–492 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Wang, D., Dong, R., Mou, C.: Decomposition of polynomial sets into characteristic pairs. arXiv:1702.08664 (2017)
  32. 32.
    Wang, D., Zhang, Y.: An algorithm for decomposing a polynomial system into normal ascending sets. Sci. China Ser. A 50(10), 1441–1450 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Weispfenning, V.: Comprehensive Gröbner bases. J. Symb. Comput. 14(1), 1–29 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Wu, W.-T.: Basic principles of mechanical theorem proving in elementary geometries. J. Autom. Reason. 2(3), 221–252 (1986)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.LMIB–SKLSDE–School of Mathematics and Systems ScienceBeihang UniversityBeijingChina

Personalised recommendations