Advertisement

On New Integrals of the Algaba-Gamero-Garcia System

  • Alexander D. Bruno
  • Victor F. EdneralEmail author
  • Valery G. Romanovski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10490)

Abstract

We study local integrability of a plane autonomous polynomial system of ODEs depending on five parameters with a degenerate singular point at the origin. The approach is based on making use of the Power Geometry Method and the computation of normal forms. We look for the complete set of necessary conditions on parameters of the system under which the system is locally integrable near the degenerate stationary point. We found earlier that the sets of parameters satisfying these conditions consist of four two-parameter subsets in the full five-parameter co-space. Now we consider the special subcase of the case \(b^2 = 2/3\) and separate subsubcases when additional first integrals can exist. Here we have found two such integrals.

Keywords

Ordinary differential equations Integrability Resonant normal form Power Geometry Computer algebra 

Notes

Acknowledgements

Victor F. Edneral was supported by the grant NSh-7989.2016.2 of the President of Russian Federation and by the Ministry of Education and Science of the Russian Federation (Agreement number 02 A03.21.0008), Valery G. Romanovski was supported by the Slovenian Research Agency (research core funding No. P1-0306).

References

  1. 1.
    Algaba, A., Gamero, E., Garcia, C.: The integrability problem for a class of planar systems. Nonlinearity 22, 395–420 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bateman, H., Erdêlyi, A.: Higher Transcendental Functions, vol. 1. McGraw-Hill Book Company, New York (1953)zbMATHGoogle Scholar
  3. 3.
    Bruno, A.D.: Analytical form of differential equations (I, II). Trudy Moskov. Mat. Obsc. 25, 119–262 (1971), 26, 199–239 (1972) (Russian). Trans. Moscow Math. Soc. 25, 131–288 (1971), 26, 199–239 (1972) (English)Google Scholar
  4. 4.
    Bruno, A.D.: Local Methods in Nonlinear Differential Equations. Nauka, Moscow (1979) (Russian). Springer, Berlin (1989) (English)Google Scholar
  5. 5.
    Bruno, A.D.: Power Geometry in Algebraic and Differential Equations. Fizmatlit, Moscow (1998) (Russian). Elsevier Science, Amsterdam (2000) (English)Google Scholar
  6. 6.
    Bruno, A.D., Edneral, V.F.: Algorithmic analysis of local integrability. Dokl. Akad Nauk 424(3), 299–303 (2009) (Russian). Doklady Mathem. 79(1), 48–52 (2009) (English)Google Scholar
  7. 7.
    Bruno, A.D., Edneral, V.F.: On integrability of a planar ODE system near a degenerate stationary point. In: Gerdt, V.P., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2009. LNCS, vol. 5743, pp. 45–53. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-04103-7_4 CrossRefGoogle Scholar
  8. 8.
    Bruno, A.D., Edneral, V.F.: On integrability of a planar system of ODEs near a degenerate stationary point. J. Math. Sci. 166(3), 326–333 (2010)CrossRefzbMATHGoogle Scholar
  9. 9.
    Bruno, A.D., Edneral, V.F.: On possibility of additional solutions of the degenerate system near double degeneration at the special value of the parameter. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2013. LNCS, vol. 8136, pp. 75–87. Springer, Cham (2013). doi: 10.1007/978-3-319-02297-0_6 CrossRefGoogle Scholar
  10. 10.
    Christopher, C., Mardešić, P., Rousseau, C.: Normalizable, integrable, and linearizable saddle points for complex quadratic systems in C \(^2\). J. Dyn. Control Syst. 9, 311–363 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Edneral, V.F.: An algorithm for construction of normal forms. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2007. LNCS, vol. 4770, pp. 134–142. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-75187-8_10 CrossRefGoogle Scholar
  12. 12.
    Edneral, V., Romanovski, V.G.: On sufficient conditions for integrability of a planar system of ODEs near a degenerate stationary point. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2010. LNCS, vol. 6244, pp. 97–105. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15274-0_9 CrossRefGoogle Scholar
  13. 13.
    Romanovski, V.G., Shafer, D.S.: The Center and Cyclicity Problems: A Computational Algebra Approach. Birkhäuser, Boston (2009)zbMATHGoogle Scholar
  14. 14.
  15. 15.

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alexander D. Bruno
    • 1
  • Victor F. Edneral
    • 2
    • 3
    Email author
  • Valery G. Romanovski
    • 4
    • 5
    • 6
  1. 1.Keldysh Institute of Applied Mathematics of RASMoscowRussia
  2. 2.Skobeltsyn Institute of Nuclear PhysicsLomonosov Moscow State UniversityMoscowRussia
  3. 3.Peoples’ Friendship University of Russia (RUDN University)MoscowRussian Federation
  4. 4.Faculty of Electrical Engineering and Computer ScienceUniversity of MariborMariborSlovenia
  5. 5.CAMTP – Center for Applied Mathematics and Theoretical PhysicsUniversity of MariborMariborSlovenia
  6. 6.Faculty of Natural Science and MathematicsUniversity of MariborMariborSlovenia

Personalised recommendations