Symbolic-Numerical Algorithms for Solving the Parametric Self-adjoint 2D Elliptic Boundary-Value Problem Using High-Accuracy Finite Element Method

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10490)


We propose new symbolic-numerical algorithms implemented in Maple-Fortran environment for solving the parametric self-adjoint elliptic boundary-value problem (BVP) in a 2D finite domain, using high-accuracy finite element method (FEM) with triangular elements and high-order fully symmetric Gaussian quadratures with positive weights, and no points are outside the triangle (PI type). The algorithms and the programs calculate with the given accuracy the eigenvalues, the surface eigenfunctions and their first derivatives with respect to the parameter of the BVP for parametric self-adjoint elliptic differential equation with the Dirichlet and/or Neumann type boundary conditions on the 2D finite domain, and the potential matrix elements, expressed as integrals of the products of surface eigenfunctions and/or their first derivatives with respect to the parameter. We demonstrated an efficiency of algorithms and program by benchmark calculations of helium atom ground state.


Parametric elliptic boundary-value problem Finite element method High-order fully symmetric high-order Gaussian quadratures Kantorovich method Systems of second-order ordinary differential equations 


  1. 1.
    Bathe, K.J.: Finite Element Procedures in Engineering Analysis. Prentice Hall, Englewood Cliffs (1982)Google Scholar
  2. 2.
    Ciarlet, P.: The Finite Element Method for Elliptic Problems. North-Holland Publ. Comp., Amsterdam (1978)zbMATHGoogle Scholar
  3. 3.
    Cools, R.: An encyclopaedia of quadrature Formulas. J. Complex. 19, 445 (2003). CrossRefzbMATHGoogle Scholar
  4. 4.
    Chuluunbaatar, O., Gusev, A.A., Abrashkevich, A.G., Amaya-Tapia, A., Kaschiev, M.S., Larsen, S.Y., Vinitsky, S.I.: KANTBP: a program for computing energy levels, reaction matrix and radial wave functions in the coupled-channel hyperspherical adiabatic approach. Comput. Phys. Commun. 177, 649–675 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dunavant, D.A.: High degree efficient symmetrical Gaussian quadrature rules for the triangle. Int. J. Numer. Methods Eng. 21, 1129–1148 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Esry, B.D., Lin, C.D., Greene, C.H.: Adiabatic hyperspherical study of the helium trimer. Phys. Rev. A 54, 394–401 (1996)CrossRefGoogle Scholar
  7. 7.
    Fano, U., Rau, A.R.P.: Atomic Collisions and Spectra. Academic Press, Florida (1986)Google Scholar
  8. 8.
    Gusev, A.A., Chuluunbaatar, O., Vinitsky, S.I., Abrashkevich, A.G.: KANTBP 3.0: new version of a program for computing energy levels, reflection and transmission matrices, and corresponding wave functions in the coupled-channel adiabatic approach. Comput. Phys. Commun. 185, 3341–3343 (2014)CrossRefzbMATHGoogle Scholar
  9. 9.
    Gusev, A.A., Chuluunbaatar, O., Vinitsky, S.I., Abrashkevich, A.G.: POTHEA: a program for computing eigenvalues and eigenfunctions and their first derivatives with respect to the parameter of the parametric self-adjoined 2D elliptic partial differential equation. Comput. Phys. Commun. 185, 2636–2654 (2014)CrossRefzbMATHGoogle Scholar
  10. 10.
    Kantorovich, L.V., Krylov, V.I.: Approximate Methods of Higher Analysis. Wiley, New York (1964)zbMATHGoogle Scholar
  11. 11.
    Kress, J.D., Parker, G.A., Pack, R.T., Archer, B.J., Cook, W.A.: Comparison of Lanczos and subspace iterations for hyperspherical reaction path calculations. Comput. Phys. Commun. 53, 91–108 (1989)CrossRefGoogle Scholar
  12. 12.
    Papanicolopulos, S.-A.: Analytical computation of moderate-degree fully-symmetric quadrature rules on the triangle. arXiv:1111.3827v1 [math.NA]
  13. 13.
    Strang, G., Fix, G.J.: An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs (1973)zbMATHGoogle Scholar
  14. 14.
    Vinitskii, S.I., Ponomarev, L.I.: Adiabatic representation in the three-body problem with Coulomb interaction. Sov. J. Part. Nucl. 13, 557–587 (1982)Google Scholar
  15. 15.
    Vinitsky, S.I., Gusev, A.A., Chuluunbaatar, O., Derbov, V.L., Zotkina, A.S.: On calculations of two-electron atoms in spheroidal coordinates mapping on hypersphere. In: Proceedings of SPIE, vol. 9917, p. 99172Z (2016)Google Scholar
  16. 16.
    Vlasova, Z.A.: On the method of reduction to ordinary differential equations. Trudy Mat. Inst. Steklov. 53, 16–36 (1959)MathSciNetGoogle Scholar
  17. 17.
    Zhang, L., Cui, T., Liu, H.: A set of symmetric quadrature rules on triangles and tetrahedra. J. Comput. Math. 27, 89–96 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Joint Institute for Nuclear ResearchDubnaRussia
  2. 2.RUDN UniversityMoscowRussia
  3. 3.Institute of MathematicsNational University of MongoliaUlaanbaatarMongolia
  4. 4.N.G. Chernyshevsky Saratov National Research State UniversitySaratovRussia
  5. 5.Institute of PhysicsUniversity of Maria Curie-SkłodowskaLublinPoland

Personalised recommendations