Skip to main content
  • 1161 Accesses

Abstract

Magnetism has been a subject of intense research for more than a century as it has played a pivotal role for the benefit of mankind. Starting from old-age magnetic compass used for navigation, magnetism has numerous applications in modern and future data storage technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Maxwell JC (1865) A dynamical theory of the electromagnetic field. Philos Trans R Soc Lond 155:459–512. doi:10.1098/rstl.1865.0008

    Article  Google Scholar 

  2. Weiss P (1906) La variation du ferromagnetisme du temperature. Comptes Rendus 143:1136–1149

    Google Scholar 

  3. Stoner EC, Wohlfarth EP (1948) A mechanism of magnetic hysteresis in heterogeneous alloys. philosophical transactions of the royal society of London. Ser A Math Phys Sci 240(826):599–642. doi:10.1098/rsta.1948.0007

  4. Gerlach W, Stern O (1922) Das magnetische Moment des Silberatoms. Zeitschrift für Physik 9(1):353–355. doi:10.1007/bf01326984

    Article  Google Scholar 

  5. Uhlenbeck GE, Goudsmit S (1926) Spinning electrons and the structure of spectra. Nature 117:264–265. doi:10.1038/117264a0

    Article  Google Scholar 

  6. Heisenberg W, Pauli W (1929) Zur Quantendynamik der Wellenfelder. Zeitschrift für Physik 56(1):1–61. doi:10.1007/bf01340129

    Article  Google Scholar 

  7. Skomski R (2003) Nanomagnetics. J Phys Condens Matter 15(20):R841. doi:10.1088/0953-8984/15/20/202

    Article  Google Scholar 

  8. Bader SD (2006) Opportunities in nanomagnetism. Rev Mod Phys 78(1):1–15. doi:10.1103/RevModPhys.78.1

  9. Žutić I, Fabian J, Das Sarma S (2004) Spintronics: fundamentals and applications. Rev Mod Phys 76(2):323–410. doi:10.1103/RevModPhys.76.323

  10. Landau L, Lifshitz E (1935) On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys Z. Sowjetunion 8(153):101–114

    Google Scholar 

  11. Gilbert TL (2004) A phenomenological theory of damping in ferromagnetic materials. IEEE Trans Magn 40(6):3443–3449. doi:10.1109/tmag.2004.836740

    Article  Google Scholar 

  12. Griffiths JHE (1946) Anomalous high-frequency resistance of ferromagnetic metals. Nature 158:670–671. doi:10.1038/158670a0

    Article  Google Scholar 

  13. Kittel C (1948) On the theory of ferromagnetic resonance absorption. Phys Rev 73(2):155–161. doi:10.1103/PhysRev.73.155

  14. Kirilyuk A, Kimel AV, Rasing T (2010) Ultrafast optical manipulation of magnetic order. Rev Mod Phys 82(3):2731–2784. doi: 10.1103/RevModPhys.82.2731

  15. Beaurepaire E, Merle JC, Daunois A, Bigot JY (1996) Ultrafast spin dynamics in ferromagnetic nickel. Phys Rev Lett 76(22):4250–4253. doi:10.1103/PhysRevLett.76.4250

  16. Koopmans B, Malinowski G, Dalla Longa F, Steiauf D, Faehnle M, Roth T, Cinchetti M, Aeschlimann M (2010) Explaining the paradoxical diversity of ultrafast laser-induced demagnetization. Nat Mater 9(3):259–265. doi:10.1038/nmat2593

    Google Scholar 

  17. Malinowski G, Longa FD, Rietjens JHH, Paluskar PV, Huijink R, Swagten HJM, Koopmans B (2008) Control of speed and efficiency of ultrafast demagnetization by direct transfer of spin angular momentum. Nat Phys 4(11):855–858. doi:10.1038/nphys1092

    Article  Google Scholar 

  18. Bigot J-Y, Vomir M (2013) Ultrafast magnetization dynamics of nanostructures. Ann Phys 525(1–2):2–30. doi:10.1002/andp.201200199

    Article  Google Scholar 

  19. Barman A, Haldar A (2014) Time-domain study of magnetization dynamics in magnetic thin films and micro-and nanostructures. In: Camley RE, Stamps R (eds) Solid State Phys, vol 65. Academic Press, Elsevier Inc., Burlington, pp 1–108. doi:http://dx.doi.org/10.1016/B978-0-12-800175-2.00001-7

  20. Tserkovnyak Y, Brataas A, Bauer GEW, Halperin BI (2005) Nonlocal magnetization dynamics in ferromagnetic heterostructures. Rev Mod Phys 77(4):1375–1421. doi:10.1103/RevModPhys.77.1375

  21. Demokritov SO, Hillebrands B, Slavin AN (2001) Brillouin light scattering studies of confined spin waves: linear and nonlinear confinement. Phys Rep 348(6):441–489. doi:10.1016/S0370-1573(00)00116-2

    Article  Google Scholar 

  22. Barman A, Wang S, Maas JD, Hawkins AR, Kwon S, Liddle A, Bokor J, Schmidt H (2006) Magneto-optical observation of picosecond dynamics of single nanomagnets. Nano Lett 6(12):2939–2944. doi:10.1021/nl0623457

    Article  Google Scholar 

  23. Keatley PS, Kruglyak VV, Neudert A, Galaktionov EA, Hicken RJ, Childress JR, Katine JA (2008) Time-resolved Investigation of magnetization dynamics of arrays of nonellipsoidal nanomagnets with nonuniform ground states. Phys Rev B 78(21):214412. doi:10.1103/PhysRevB.78.214412

    Article  Google Scholar 

  24. Rana B, Kumar D, Barman S, Pal S, Fukuma Y, Otani Y, Barman A (2011) Detection of picosecond magnetization dynamics of 50 nm magnetic dots down to the single dot regime. ACS Nano 5(12):9559–9565. doi:10.1021/nn202791g

    Article  Google Scholar 

  25. Baibich MN, Broto JM, Fert A, Vandau FN, Petroff F, Eitenne P, Creuzet G, Friederich A, Chazelas J (1988) Giant magnetoresistance of (001)Fe/(001) Cr magnetic superlattices. Phys Rev Lett 61(21):2472–2475. doi:10.1103/PhysRevLett.61.2472

  26. Binasch G, Grünberg P, Saurenbach F, Zinn W (1989) Enhanced magnetoresistance in layered magnetic-structures with antiferromagnetic interlayer exchange. Phys Rev B 39(7):4828–4830. doi:10.1103/PhysRevB.39.4828

    Article  Google Scholar 

  27. Berger L (1996) Emission of spin waves by a magnetic multilayer traversed by a current. Phys Rev B 54(13):9353–9358. doi:10.1103/PhysRevB.54.9353

    Article  Google Scholar 

  28. Slonczewski JC (1996) Current-driven excitation of magnetic multilayers. J Magn Magn Matter 159(1–2):L1–L7. doi:10.1016/0304-8853(96)00062-5

    Article  Google Scholar 

  29. Parkin SSP, Bhadra R, Roche KP (1991) Oscillatory magnetic exchange coupling through thin copper layers. Phys Rev Lett 66(16):2152–2155. doi:10.1103/PhysRevLett.66.2152

  30. Parkin SSP (1993) Origin of enhanced magnetoresistance of magnetic multilayers—Spin-dependent scattering from magnetic interface states. Phys Rev Lett 71(10):1641–1644. doi:10.1103/PhysRevLett.71.1641

  31. Tsoi M, Jansen AGM, Bass J, Chiang WC, Seck M, Tsoi V, Wyder P (1998) Excitation of a magnetic multilayer by an electric current. Phys Rev Lett 80(19):4281–4284. doi:10.1103/PhysRevLett.80.4281

  32. Dyakonov MI, Perel VI (1971) Current-induced spin orientation of electrons in semiconductors. Phys Lett A 35(6):459–460. doi:http://dx.doi.org/10.1016/0375-9601(71)90196-4

  33. Yu AB, Rashba EI (1984) Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J Phys C Solid State Phys 17(33):6039. doi:10.1088/0022-3719/17/33/015

    Article  Google Scholar 

  34. Garello K, Miron IM, Avci CO, Freimuth F, Mokrousov Y, Bluegel S, Auffret S, Boulle O, Gaudin G, Gambardella P (2013) Symmetry and magnitude of spin-orbit torques in ferromagnetic heterostructures. Nat Nanotechnol 8(8):587–593. doi:10.1038/nnano.2013.145

    Article  Google Scholar 

  35. Mangin S, Gottwald M, Lambert CH, Steil D, Uhlir V, Pang L, Hehn M, Alebrand S, Cinchetti M, Malinowski G, Fainman Y, Aeschlimann M, Fullerton EE (2014) Engineered materials for all-optical helicity-dependent magnetic switching. Nat Mater 13(3):287–293. doi:10.1038/nmat3864

    Article  Google Scholar 

  36. Lambert CH, Mangin S, Varaprasad B, Takahashi YK, Hehn M, Cinchetti M, Malinowski G, Hono K, Fainman Y, Aeschlimann M, Fullerton EE (2014) All-optical control of ferromagnetic thin films and nanostructures. Science 345(6202):1337–1340. doi:10.1126/science.1253493

    Article  Google Scholar 

  37. Apalkov D, Khvalkovskiy A, Watts S, Nikitin V, Tang X, Lottis D, Moon K, Luo X, Chen E, Ong A, Driskill-Smith A, Krounbi M (2013) Spin-transfer torque magnetic random access memory (STT-MRAM). J Emerg Technol Comput Syst 9(2):1–35. doi:10.1145/2463585.2463589

  38. Kruglyak VV, Demokritov SO, Grundler D (2010) Magnonics. J Phys D Appl Phys 43(26):260301. doi:10.1088/0022-3727/43/26/260301

  39. Azzawi S, Ganguly A, Tokaç M, Rowan-Robinson RM, Sinha J, Hindmarch AT, Barman A, Atkinson D (2016) Evolution of damping in ferromagnetic/nonmagnetic thin film bilayers as a function of nonmagnetic layer thickness. Phys Rev B 93(5):054402. doi:10.1103/PhysRevB.93.054402

    Article  Google Scholar 

  40. Ganguly A, Azzawi S, Saha S, King JA, Rowan-Robinson RM, Hindmarch AT, Sinha J, Atkinson D, Barman A (2015) Tunable magnetization dynamics in interfacially modified Ni81Fe19/Pt bilayer thin film microstructures. Sci Rep 5:17596. doi:10.1038/srep17596

    Article  Google Scholar 

  41. King JA, Ganguly A, Burn DM, Pal S, Sallabank EA, Hase TPA, Hindmarch AT, Barman A, Atkinson D (2014) Local control of magnetic damping in ferromagnetic/non-magnetic bilayers by interfacial intermixing induced by focused ion-beam irradiation. Appl Phys Lett 104(24):242410. doi:10.1063/1.4883860

  42. Ganguly A, Rowan-Robinson RM, Haldar A, Jaiswal S, Sinha J, Hindmarch AT, Atkinson DA, Barman A (2014) Time-domain detection of current controlled magnetization damping in Pt/Ni81Fe19 bilayer and determination of Pt spin Hall angle. Appl Phys Lett 105(11):112409. doi:10.1063/1.4896277

  43. Mondal S, Choudhury S, Jha N, Ganguly A, Sinha J, Barman A (2017) All-optical detection of spin Hall angle in W/CoFeB/SiO2 heterostructures by varying thickness of the tungsten layer. Phys Rev B 96(5):054414. doi:10.1103/PhysRevB.96.054414

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjan Barman .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barman, A., Sinha, J. (2018). Introduction. In: Spin Dynamics and Damping in Ferromagnetic Thin Films and Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-319-66296-1_1

Download citation

Publish with us

Policies and ethics