Skip to main content

Surfaces With Light-Like Points In Lorentz-Minkowski 3-Space With Applications

  • Conference paper
  • First Online:
Lorentzian Geometry and Related Topics (GELOMA 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 211))

Included in the following conference series:

Abstract

With several concrete examples of zero mean curvature surfaces in the Lorentz-Minkowski 3-space \(\varvec{R}^3_1\) containing a light-like line recently having been found, here we construct all real analytic germs of zero mean curvature surfaces by applying the Cauchy-Kovalevski theorem for partial differential equations. A point where the first fundamental form of a surface degenerates is said to be light-like. We also show a theorem on a property of light-like points of a surface in \(\varvec{R}^3_1\) whose mean curvature vector is smoothly extendable. This explains why such surfaces will contain a light-like line when they do not change causal types. Moreover, several applications of these two results are given.

Umehara was partially supported by the Grant-in-Aid for Scientific Research (A) No. 26247005, and Yamada by (C) No. 26400066 from Japan Society for the Promotion of Science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this paper, we say that a surface changes its causal types across the light-like line if the causal type of one-side of the line is space-like and the other-side is time-like. If the causal type of the both sides of the line coincides, we say that the surface does not change its causal type across the light-like line.

References

  1. S. Akamine, Causal characters of zero mean curvature surfaces of Riemann-type in the Lorentz-Minkowski \(3\) -space. Kyushu J. Math. 71, 211–249 (2017)

    Google Scholar 

  2. S. Akamine, Behavior of the Gaussian curvature of timelike minimal surfaces with singularities, preprint, arXiv:1701.00238

  3. S. Fujimori, Y. Kawakami, M. Kokubu, W. Rossman, M. Umehara, K. Yamada, Zero mean curvature entire graphs of mixed type in Lorentz-Minkowski \(3\)-space. Quart. J. Math. 67, 801–837 (2016)

    MATH  Google Scholar 

  4. S. Fujimori, Y. Kawakami, M. Kokubu, W. Rossman, M. Umehara, K. Yamada, Analytic extension of Jorge-Meeks type maximal surfaces in Lorentz-Minkowski \(3\)-space. Osaka J. Math. 54, 249–272 (2017)

    MathSciNet  MATH  Google Scholar 

  5. S. Fujimori, Y.W. Kim, S.-E. Koh, W. Rossman, H. Shin, H. Takahashi, M. Umehara, K. Yamada, S.-D. Yang, Zero mean curvature surfaces in \(\mathbf{L}^3\) containing a light-like line. C. R. Acad. Sci. Paris. Ser. I. 350, 975–978 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Fujimori, Y.W. Kim, S.-E. Koh, W. Rossman, H. Shin, M. Umehara, K. Yamada, S.-D. Yang, Zero mean curvature surfaces in Lorentz-Minkowski \(3\)-space and \(2\)-dimensional fluid mechanics. Math. J. Okayama Univ. 57, 173–200 (2015)

    MathSciNet  MATH  Google Scholar 

  7. S. Fujimori, Y.W. Kim, S.-E. Koh, W. Rossman, H. Shin, M. Umehara, K. Yamada, S.-D. Yang, Zero mean curvature surfaces in Lorentz-Minkowski \(3\)-space which change type across a light-like line, Osaka J. Math., 52 (2015), 285–297. Erratum to the article “Zero mean curvature surfaces in Lorentz-Minkowski \(3\)-space which change type across a light-like line”. Osaka J. Math. 53, 289–293 (2016)

    Google Scholar 

  8. S. Fujimori, W. Rossman, M. Umehara, K. Yamada, S.-D. Yang, Embedded triply periodic zero mean curvature surfaces of mixed type in Lorentz-Minkowski 3-space. Michigan Math. J. 63, 189–207 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. C. Gu, The extremal surfaces in the \(3\)-dimensional Minkowski space. Acta. Math. Sinica. 1, 173–180 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Honda, M. Koiso, M. Kokubu, M. Umehara, K. Yamada, Mixed type surfaces with bounded mean curvature in \(3\)-dimensional space-times. Differ. Geom. Appl. 52, 64–77 (2017). https://doi.org/10.1016/j.difgeo.2017.03.009

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Izumiya, T. Sato, Lightlike hypersurfaces along spacelike submanifolds in Minkowski space-time. J. Geom. Phys. 71, 30–52 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Y.W. Kim, S.-E. Koh, H. Shin, S.-D. Yang, Spacelike maximal surfaces, timelike minimal surfaces, and Björling representation formulae. J. Korean Math. Soc. 48, 1083–1100 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. V.A. Klyachin, Zero mean curvature surfaces of mixed type in Minkowski space. Izv. Math. 67, 209–224 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. O. Kobayashi, Maximal surfaces in the \(3\)-dimensional Minkowski space \(L^3\). Tokyo J. Math. 6, 297–309 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. S. G. Krantz, H. R. Parks, A Primer of Real Analytic Functions, 2nd edn. (Birkhäuser, USA, 2002)

    Google Scholar 

  16. M. Umehara, K. Yamada, Hypersurfaces with light-like points in Lorentzian manifolds, in preparation

    Google Scholar 

Download references

Acknowledgements

The authors thank Shintaro Akamine, Udo Hertrich-Jeromin, Wayne Rossman and Seong-Deog Yang for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kotaro Yamada .

Editor information

Editors and Affiliations

Appendix A. Division Lemma

Appendix A. Division Lemma

Lemma A.1

Let g be a \(C^r\)-function (\(r\ge 1\)) defined on a convex domain U of the xy-plane including the origin o, satisfying

$$\begin{aligned} g(0,y)=\frac{\partial g}{\partial x}(0,y) =\frac{\partial ^2 g}{\partial x^2}(0,y) =\dots =\frac{\partial ^k g}{\partial x^k}(0,y)=0\qquad \bigl ((0,y)\in U\bigr ) \end{aligned}$$
(A.1)

for a nonnegative integer \(k<r\). Then there exists a \(C^{r-k-1}\)-function h defined on U such that

$$\begin{aligned} g(x,y)=x^{k+1}h(x,y)\qquad \bigl ((x,y)\in U\bigr ). \end{aligned}$$
(A.2)

Proof

We shall prove by an induction in k. Since

$$\begin{aligned} g(x,y)&= \int _0^1 \frac{d g(tx,y)}{d t}\,dt = \int _0^1 x g_x(tx,y) dt=x \int _0^1 g_x(tx,y)\, dt, \end{aligned}$$

the conclusion follows for \(k=0\), by setting

$$ h(x,y):=\int _0^1 g_x(tx,y)\, dt. $$

Assume that the statement holds for \(k-1\). If g satisfies (A.1), there exists a \(C^{r-k}\)-function \(\varphi (x,y)\) defined on U such that

$$\begin{aligned} g(x,y)=x^k \varphi (x,y)\qquad \bigl ((x,y)\in U\bigr ). \end{aligned}$$
(A.3)

Differentiating this k-times in x, we have

$$ 0=\frac{\partial ^k g}{\partial x^k}(0,y) = k! \varphi (0,y) $$

because of (A.1). Hence, by the case \(k=0\) of this lemma, there exists \(C^{k-r-1}\)-function h(xy) defined on U such that \(\varphi (x,y)=x h(x,y)\). The function h is the desired one. \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Umehara, M., Yamada, K. (2017). Surfaces With Light-Like Points In Lorentz-Minkowski 3-Space With Applications. In: Cañadas-Pinedo, M., Flores, J., Palomo, F. (eds) Lorentzian Geometry and Related Topics. GELOMA 2016. Springer Proceedings in Mathematics & Statistics, vol 211. Springer, Cham. https://doi.org/10.1007/978-3-319-66290-9_14

Download citation

Publish with us

Policies and ethics