Skip to main content

Increasing Dependability in Safety Critical CPSs Using Reflective Statecharts

  • Conference paper
  • First Online:
Computer Safety, Reliability, and Security (SAFECOMP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10489))

Included in the following conference series:

Abstract

Dependability is crucial in Safety Critical Cyber Physical Systems (CPS). In spite of the research carried out in recent years, implementation and certification of such systems remain costly and time consuming. In this paper, a framework for Statecharts based SW component development is presented. This framework called CRESC (C++ REflective StateCharts), in addition to assisting in transforming a Statechart model to code, uses reflection to make the model available at Run Time. Thus, the SW components can be monitored at Run Time in terms of model elements. Our framework helps the developer separate monitoring from functionality. Any monitoring strategy needed to increase dependability can be added independently from the functional part. The framework was implemented in C++ because this programming language, together with the Statechart formalism constitute widely used choices for the Safety Critical CPS domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Derler, P., Lee, E.A., Vincentelli, A.S.: Modeling cyber-physical systems. In: Special issue on CPS, pp. 13–28. IEEE (2012)

    Google Scholar 

  2. IEC 61508: Functional safety of electrical/electronic/programmable electronic safety related systems (2010)

    Google Scholar 

  3. ISO 26262: Road vehicles- Functional Safety (2012)

    Google Scholar 

  4. CENELEC: EN50128 Railway applications- Communications, signalling and processing systems-Software for railway control and protection systems (2012)

    Google Scholar 

  5. IEC 61511: Functional safety- Safety instrumented systems for the process industry sector (2016)

    Google Scholar 

  6. RTCA & EUROCAE. DO-178B: Software Considerations in Airborne Systems and Equipment Certification (1992)

    Google Scholar 

  7. Laprie, J.-C., Arlat, J., Beounes, C., Kanoun, K.: Definition and analysis of hardware-and software-fault-tolerant architectures. Computer 23(7), 39–51 (1990). doi:10.1109/2.56851

    Article  Google Scholar 

  8. Laprie, J., Kanoun, K.: Software reliability and system reliability. In: Handbook of Software Reliability Engineering (1996)

    Google Scholar 

  9. Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of dependable and secure computing. IEEE Trans. Dependable Secure Comput. 1(1), 11–33 (2004)

    Article  Google Scholar 

  10. Heimerdinger, W.L., Weinstock, C.B.: A conceptual framework for system fault tolerance. Technical report, Carnegie Mellon University (1992)

    Google Scholar 

  11. Al-Asaad, H., Murray, B., Hayes, J.: Online BIST for emebedded systems. IEEE Des. Test Comput. 15, 17–24 (1998)

    Article  Google Scholar 

  12. Havelund, K.: Reliable software: testing and monitoring. http://www.runtime-verification.org/course09

  13. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: intermediate language and tools for analysis and transformation of C programs. In: Horspool, R.N. (ed.) CC 2002. LNCS, vol. 2304, pp. 213–228. Springer, Heidelberg (2002). doi:10.1007/3-540-45937-5_16

    Chapter  Google Scholar 

  14. Valgrind. http://valgrind.org. Accessed 14 June 2017

  15. Byte code engineering library. http://commons.apache.org/proper/commons-bcel. Accessed 14 June 2017

  16. Fabre, J.-C., Killijian, M.O., Taiani, F.: Lessons learnt, robustness of automotive applications using reflective computing (2011)

    Google Scholar 

  17. Lu, C., Fabre, J.-C., Killijian, M.-O.: Robustness of modular multi-layered software in the automotive domain: a wrapping-based approach. In: Regular paper submitted to ETFA (2009)

    Google Scholar 

  18. Lu, C., Fabre, J.-C., Killijian, M.-O.: An approach for improving fault-tolerance in automotive modular embedded software. INRIA, Paris, France (2009)

    Google Scholar 

  19. Automotive open system architecture. https://www.autosar.org. Accessed 14 June 2017

  20. Ferreira, L.L., Rubira, C.M.: Reflective design patterns to implement fault tolerance (1998)

    Google Scholar 

  21. Barbier, F.: MDE-based design and implementation of autonomic software components. In: International Conference on Cognitive Informatics (ICCI) (2006)

    Google Scholar 

  22. Elkorobarrutia, X., Muxika, M., Sagardui, G., Barbier, F., Aretxandieta, X.: A framework for statechart based component reconfiguration. In: Engineering of Autonomic and Autonomous Systems (EASE) (2008)

    Google Scholar 

  23. The boost statechart library (2015). http://www.boost.org

  24. Banci, M., Fantechi, A.: Geographical versus functional modelling by statecharts of interlocking systems. Electron. Notes Theor. Comput. Sci. 133, 3–19 (2005)

    Article  Google Scholar 

  25. Pap, Z., Majzik, I., Pataricza, A.: Checking general safety criteria on UML statecharts. In: Voges, U. (ed.) SAFECOMP 2001. LNCS, vol. 2187, pp. 46–55. Springer, Heidelberg (2001). doi:10.1007/3-540-45416-0_5

    Chapter  Google Scholar 

  26. Pradelly, M., Pazzi. L.: Using part-whole statecharts for the safe modeling of clinical guidelines (2010)

    Google Scholar 

  27. The Motor Industry Software Reliability Association. Misra C++: Guidelines for the use of the C++ language in critical systems (2008)

    Google Scholar 

  28. Elkorobarrutia, X.: ISCART: framework para la reconfiguracin dinamica de componentes software basados en statecharts. Master’s thesis, Mondragon University (2010)

    Google Scholar 

  29. Lu, C.: Robustesse du logiciel embarqu multicouche par une approche reflexive: application l’automobile. Master’s thesis, LUNIVERSIT DE TOULOUSE (2009)

    Google Scholar 

  30. Illarramendi, M., Etxeberria, L., Elkorobarrutia, X.: Educational use case final results. Reuse in safety critical systems (2015)

    Google Scholar 

  31. Eclipse IDE for C/C++ developers (Mars). https://eclipse.org/mars. Accessed 14 June 2017

  32. Papyrus. https://eclipse.org/papyrus. Accessed 14 June 2017

  33. Egwutuoha, I.P., Levy, D., Selic, B., Chen, S.: A survey of fault tolerance mechanisms and checkpoint/restart implementations for high performance computing systems. J. Supercomput. 65, 1302–1326 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The project has been developed by the Embedded System Group of MGEP and supported by the Department of Education, Universities and Research of the Basque Government under the projects Ikerketa Taldeak (Grupo de Sistemas Embebidos) and LANA II ELKARTEK and by the European H2020 research and innovation programme, ECSEL Joint Undertaking, and National Funding Authorities from 19 involved countries under the project Productive 4.0 with grant agreement no. GAP-737459 - 999978918.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miren Illarramendi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Illarramendi, M., Etxeberria, L., Elkorobarrutia, X., Sagardui, G. (2017). Increasing Dependability in Safety Critical CPSs Using Reflective Statecharts. In: Tonetta, S., Schoitsch, E., Bitsch, F. (eds) Computer Safety, Reliability, and Security . SAFECOMP 2017. Lecture Notes in Computer Science(), vol 10489. Springer, Cham. https://doi.org/10.1007/978-3-319-66284-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66284-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66283-1

  • Online ISBN: 978-3-319-66284-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics