Advertisement

An Empirical Study of Branching Heuristics Through the Lens of Global Learning Rate

  • Jia Hui Liang
  • Hari Govind V.K.
  • Pascal Poupart
  • Krzysztof Czarnecki
  • Vijay Ganesh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10491)

Abstract

In this paper, we analyze a suite of 7 well-known branching heuristics proposed by the SAT community and show that the better heuristics tend to generate more learnt clauses per decision, a metric we define as the global learning rate (GLR). Like our previous work on the LRB branching heuristic, we once again view these heuristics as techniques to solve the learning rate optimization problem. First, we show that there is a strong positive correlation between GLR and solver efficiency for a variety of branching heuristics. Second, we test our hypothesis further by developing a new branching heuristic that maximizes GLR greedily. We show empirically that this heuristic achieves very high GLR and interestingly very low literal block distance (LBD) over the learnt clauses. In our experiments this greedy branching heuristic enables the solver to solve instances faster than VSIDS, when the branching time is taken out of the equation. This experiment is a good proof of concept that a branching heuristic maximizing GLR will lead to good solver performance modulo the computational overhead. Third, we propose that machine learning algorithms are a good way to cheaply approximate the greedy GLR maximization heuristic as already witnessed by LRB. In addition, we design a new branching heuristic, called SGDB, that uses a stochastic gradient descent online learning method to dynamically order branching variables in order to maximize GLR. We show experimentally that SGDB performs on par with the VSIDS branching heuristic.

Notes

Acknowledgement

We thank Sharon Devasia Isac and Nisha Mariam Johnson from the College Of Engineering, Thiruvananthapuram, for their help in implementing the Berkmin and DLIS branching heuristics.

References

  1. 1.
  2. 2.
  3. 3.
    Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence, IJCAI 2009, pp. 399–404. Morgan Kaufmann Publishers Inc., San Francisco (2009)Google Scholar
  4. 4.
    Audemard, G., Simon, L.: Glucose 2.3 in the SAT 2013 Competition. In: Proceedings of SAT Competition 2013, pp. 42–43 (2013)Google Scholar
  5. 5.
    Biere, A.: Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race 2010. FMV Report Series Technical Report 10(1) (2010)Google Scholar
  6. 6.
    Bottou, L.: On-line Learning in Neural Networks. On-line Learning and Stochastic Approximations, pp. 9–42. Cambridge University Press, New York (1998)Google Scholar
  7. 7.
    Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: automatically generating inputs of death. In: Proceedings of the 13th ACM Conference on Computer and Communications Security, CCS 2006, pp. 322–335. ACM, New York (2006)Google Scholar
  8. 8.
    Carvalho, E., Silva, J.P.M.: Using rewarding mechanisms for improving branching heuristics. In: Online Proceedings of The Seventh International Conference on Theory and Applications of Satisfiability Testing, SAT 2004, 10–13 May 2004, Vancouver, BC, Canada, (2004)Google Scholar
  9. 9.
    Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfiability solving. Formal Meth. Syst. Des. 19(1), 7–34 (2001)CrossRefzbMATHGoogle Scholar
  10. 10.
    Cox, D.R.: The regression analysis of binary sequences. J. Roy. Stat. Soc.: Ser. B (Methodol.) 20(2), 215–242 (1958)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-24605-3_37 CrossRefGoogle Scholar
  12. 12.
    Fisher, R.A.: Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika 10(4), 507–521 (1915)Google Scholar
  13. 13.
    Goldberg, E., Novikov, Y.: BerkMin: a fast and robust SAT-solver. Discrete Appl. Math. 155(12), 1549–1561 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Jeroslow, R.G., Wang, J.: Solving propositional satisfiability problems. Ann. Math. Artif. Intell. 1(1–4), 167–187 (1990)CrossRefzbMATHGoogle Scholar
  15. 15.
    Katebi, H., Sakallah, K.A., Marques-Silva, J.P.: Empirical study of the anatomy of modern SAT solvers. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 343–356. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21581-0_27 CrossRefGoogle Scholar
  16. 16.
    Kautz, H., Selman, B.: Planning as satisfiability. In: Proceedings of the 10th European Conference on Artificial Intelligence, ECAI 1992, pp. 359–363. Wiley Inc., New York (1992)Google Scholar
  17. 17.
    Lagoudakis, M.G., Littman, M.L.: Learning to select branching rules in the DPLL procedure for satisfiability. Electron. Notes Discrete Math. 9, 344–359 (2001)CrossRefzbMATHGoogle Scholar
  18. 18.
    Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K.: Exponential recency weighted average branching heuristic for SAT solvers. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI 2016, pp. 3434–3440. AAAI Press (2016)Google Scholar
  19. 19.
    Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K.: Learning rate based branching heuristic for SAT solvers. In: Proceedings of the 19th International Conference on Theory and Applications of Satisfiability Testing, SAT 2016, Bordeaux, France, 5–8 July 2016, pp. 123–140 (2016)Google Scholar
  20. 20.
    Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms. Inf. Process. Lett. 47(4), 173–180 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Marques-Silva, J.P.: The impact of branching heuristics in propositional satisfiability algorithms. In: Barahona, P., Alferes, J.J. (eds.) EPIA 1999. LNCS, vol. 1695, pp. 62–74. Springer, Heidelberg (1999). doi: 10.1007/3-540-48159-1_5 CrossRefGoogle Scholar
  22. 22.
    Marques-Silva, J.P., Sakallah, K.A.: GRASP-a new search algorithm for satisfiability. In: Proceedings of the 1996 IEEE/ACM International Conference on Computer-aided Design, ICCAD 1996, pp. 220–227. IEEE Computer Society, Washington, D.C. (1996)Google Scholar
  23. 23.
    Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient SAT solver. In: Proceedings of the 38th Annual Design Automation Conference, DAC 2001, pp. 530–535. ACM, New York (2001)Google Scholar
  24. 24.
    Murphy, K.P.: Machine Learning: A Probabilistic Perspective. The MIT Press, Cambridge (2012)zbMATHGoogle Scholar
  25. 25.
    Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for satisfiability solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 294–299. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-72788-0_28 CrossRefGoogle Scholar
  26. 26.
    Soos, M.: CryptoMiniSat v4. SAT Competition, p. 23 (2014)Google Scholar
  27. 27.
    Spearman, C.: The proof and measurement of association between two things. Am. J. Psychol. 15(1), 72–101 (1904)CrossRefGoogle Scholar
  28. 28.
    Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: a cross-community infrastructure for logic solving. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp. 367–373. Springer, Cham (2014). doi: 10.1007/978-3-319-08587-6_28 Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jia Hui Liang
    • 1
  • Hari Govind V.K.
    • 2
  • Pascal Poupart
    • 1
  • Krzysztof Czarnecki
    • 1
  • Vijay Ganesh
    • 1
  1. 1.University of WaterlooWaterlooCanada
  2. 2.College Of EngineeringThiruvananthapuramIndia

Personalised recommendations