Advertisement

Hard Satisfiable Formulas for Splittings by Linear Combinations

  • Dmitry Itsykson
  • Alexander Knop
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10491)

Abstract

Itsykson and Sokolov in 2014 introduced the class of \(\mathrm {DPLL}(\oplus )\) algorithms that solve Boolean satisfiability problem using the splitting by linear combinations of variables modulo 2. This class extends the class of \(\mathrm {DPLL}\) algorithms that split by variables. \(\mathrm {DPLL}(\oplus )\) algorithms solve in polynomial time systems of linear equations modulo 2 that are hard for \(\mathrm {DPLL}\), \(\mathrm {PPSZ}\) and \(\mathrm {CDCL}\) algorithms. Itsykson and Sokolov have proved first exponential lower bounds for \(\mathrm {DPLL}(\oplus )\) algorithms on unsatisfiable formulas.

In this paper we consider a subclass of \(\mathrm {DPLL}(\oplus )\) algorithms that arbitrary choose a linear form for splitting and randomly (with equal probabilities) choose a value to investigate first; we call such algorithms drunken \(\mathrm {DPLL}(\oplus )\). We give a construction of a family of satisfiable CNF formulas \(\varPsi _n\) of size \(\mathrm {poly}(n)\) such that any drunken \(\mathrm {DPLL}(\oplus )\) algorithm with probability at least \(1 - 2^{-\varOmega (n)}\) runs at least \(2^{\varOmega (n)}\) steps on \(\varPsi _n\); thus we solve an open question stated in the paper [12]. This lower bound extends the result of Alekhnovich, Hirsch and Itsykson [1] from drunken \(\mathrm {DPLL}\) to drunken \(\mathrm {DPLL}(\oplus )\).

Notes

Acknowledgements

The authors are grateful to Dmitry Sokolov for fruitful discussions.

References

  1. 1.
    Alekhnovich, M., Hirsch, E.A., Itsykson, D.: Exponential lower bounds for the running time of DPLL algorithms on satisfiable formulas. J. Autom. Reason. 35(1–3), 51–72 (2005)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Ben-Sasson, E.: Hard examples for bounded depth frege. In: Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing, pp. 563–572. ACM (2002)Google Scholar
  3. 3.
    Beame, P., Kautz, H.A., Sabharwal, A.: Towards understanding and harnessing the potential of clause learning. J. Artif. Intell. Res. (JAIR) 22, 319–351 (2004)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Beame, P., Pitassi, T.: An exponential separation between the parity principle and the pigeonhole principle. Ann. Pure Appl. Logic 80(3), 195–228 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cook, J., Etesami, O., Miller, R., Trevisan, L.: Goldreich’s one-way function candidate and myopic backtracking algorithms. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 521–538. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-00457-5_31 CrossRefGoogle Scholar
  6. 6.
    Dantchev, S.S., Riis, S.: Tree resolution proofs of the weak pigeon-hole principle. In: Proceedings of the 16th Annual IEEE Conference on Computational Complexity, Chicago, Illinois, USA, pp. 69–75. IEEE Computer Society, 18–21 June 2001Google Scholar
  7. 7.
    Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-proving. Commun. ACM 5(7), 394–397 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7(3), 201–215 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Garlík, M., Kołodziejczyk, L.A.: Some subsystems of constant-depth Frege with parity (2017, Preprint)Google Scholar
  10. 10.
    Itsykson, D.: Lower bound on average-case complexity of inversion of Goldreich’s function by drunken backtracking algorithms. Theor. Comput. Syst. 54(2), 261–276 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Itsykson, D., Sokolov, D.: The complexity of inverting explicit Goldreich’s function by DPLL algorithms. J. Math. Sci. 188(1), 47–58 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Itsykson, D., Sokolov, D.: Lower bounds for splittings by linear combinations. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014. LNCS, vol. 8635, pp. 372–383. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-44465-8_32 Google Scholar
  13. 13.
    Krajiček, J.: Randomized feasible interpolation and monotone circuits with a local oracle. CoRR, abs/1611.0 (2016)Google Scholar
  14. 14.
    Oparin, V.: Tight upper bound on splitting by linear combinations for pigeonhole principle. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 77–84. Springer, Cham (2016). doi: 10.1007/978-3-319-40970-2_6 Google Scholar
  15. 15.
    Pudlák, P., Impagliazzo, R.: A lower bound for DLL algorithms for k-SAT (preliminary version). In: Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, CA, USA, pp. 128–136, 9–11 January 2000Google Scholar
  16. 16.
    Pudlák, P., Scheder, D., Talebanfard, N.: Tighter Hard Instances for PPSZ. CoRR, abs/1611.0 (2016)Google Scholar
  17. 17.
    Razborov, A.A.: Resolution lower bounds for perfect matching principles. J. Comput. Syst. Sci. 69(1), 3–27 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Scheder, D., Tang, B., Chen, S., Talebanfard, N.: Exponential Lower Bounds for the PPSZ k-SAT Algorithm. In: Khanna, S. (ed.) Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, pp. 1253–1263. SIAM, 6–8 January 2013Google Scholar
  19. 19.
    Urquhart, A.: Hard examples for resolution. J. ACM 34(1), 209–219 (1987)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Steklov Institute of MathematicsSaint PetersburgRussia

Personalised recommendations