Skip to main content

A Little Blocked Literal Goes a Long Way

  • Conference paper
  • First Online:
Book cover Theory and Applications of Satisfiability Testing – SAT 2017 (SAT 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10491))

Abstract

Q-resolution is a generalization of propositional resolution that provides the theoretical foundation for search-based solvers of quantified Boolean formulas (QBFs). Recently, it has been shown that an extension of Q-resolution, called long-distance resolution, is remarkably powerful both in theory and in practice. However, it was unknown how long-distance resolution is related to \(\mathsf {QRAT}\), a proof system introduced for certifying the correctness of QBF-preprocessing techniques. We show that \(\mathsf {QRAT}\) polynomially simulates long-distance resolution. Two simple rules of \(\mathsf {QRAT}\) are crucial for our simulation—blocked-literal addition and blocked-literal elimination. Based on the simulation, we implemented a tool that transforms long-distance-resolution proofs into \(\mathsf {QRAT}\) proofs. In a case study, we compare long-distance-resolution proofs of the well-known Kleine Büning formulas with corresponding \(\mathsf {QRAT}\) proofs.

This work has been supported by the Austrian Science Fund (FWF) under projects W1255-N23 and S11408-N23, and by the National Science Foundation (NSF) under grant number CCF-1618574.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Clause deletion was not used in the simulation, but is allowed in the \(\mathsf {QRAT}\) system.

References

  1. Balabanov, V., Jiang, J.R.: Unified QBF certification and its applications. Formal Methods Syst. Des. 41(1), 45–65 (2012)

    Article  MATH  Google Scholar 

  2. Balabanov, V., Widl, M., Jiang, J.R.: QBF resolution systems and their proof complexities. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 154–169. Springer, Cham (2014). doi:10.1007/978-3-319-09284-3_12

    Google Scholar 

  3. Benedetti, M., Mangassarian, H.: QBF-based formal verification: experience and perspectives. J. Satisf. Boolean Model. Comput. (JSAT ) 5(1–4), 133–191 (2008)

    MathSciNet  MATH  Google Scholar 

  4. Beyersdorff, O., Bonacina, I., Chew, L.: Lower bounds: from circuits to QBF proof systems. In: Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science (ITCS 2016), pp. 249–260. ACM (2016)

    Google Scholar 

  5. Beyersdorff, O., Chew, L., Janota, M.: On unification of QBF resolution-based calculi. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014. LNCS, vol. 8635, pp. 81–93. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44465-8_8

    Google Scholar 

  6. Beyersdorff, O., Chew, L., Janota, M.: Proof complexity of resolution-based QBF calculi. In: Proceedings of the 32nd Internation Symposium on Theoretical Aspects of Computer Science (STACS 2015). LIPIcs, vol. 30, pp. 76–89. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2015)

    Google Scholar 

  7. Beyersdorff, O., Chew, L., Mahajan, M., Shukla, A.: Are short proofs narrow? QBF resolution is not simple. In: Proceedings of the 33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016). LIPIcs, vol. 47, pp. 15:1–15:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)

    Google Scholar 

  8. Beyersdorff, O., Pich, J.: Understanding Gentzen and Frege systems for QBF. In: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2016), pp. 146–155. ACM (2016)

    Google Scholar 

  9. Chen, H.: Proof complexity modulo the polynomial hierarchy: understanding alternation as a source of hardness. In: Proceedings of the 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). LIPIcs, vol. 55, pp. 94:1–94:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)

    Google Scholar 

  10. Egly, U.: On stronger calculi for QBFs. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 419–434. Springer, Cham (2016). doi:10.1007/978-3-319-40970-2_26

    Google Scholar 

  11. Egly, U., Lonsing, F., Widl, M.: Long-distance resolution: proof generation and strategy extraction in search-based QBF solving. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19. LNCS, vol. 8312, pp. 291–308. Springer, Heidelberg (2013). doi:10.1007/978-3-642-45221-5_21

    Chapter  Google Scholar 

  12. Haken, A.: The intractability of resolution. Theor. Comput. Sci. 39, 297–308 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. Heule, M.J.H., Hunt Jr., W.A., Wetzler, N.D.: Expressing symmetry breaking in DRAT proofs. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS, vol. 9195, pp. 591–606. Springer, Cham (2015). doi:10.1007/978-3-319-21401-6_40

    Chapter  Google Scholar 

  14. Heule, M.J.H., Seidl, M., Biere, A.: Blocked literals are universal. In: Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 436–442. Springer, Cham (2015). doi:10.1007/978-3-319-17524-9_33

    Google Scholar 

  15. Heule, M.J.H., Seidl, M., Biere, A.: Solution validation and extraction for QBF preprocessing. J. Autom. Reason. 58(1), 97–125 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Janota, M.: On Q-resolution and CDCL QBF solving. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 402–418. Springer, Cham (2016). doi:10.1007/978-3-319-40970-2_25

    Google Scholar 

  17. Janota, M., Grigore, R., Marques-Silva, J.P.: On QBF proofs and preprocessing. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19. LNCS, vol. 8312, pp. 473–489. Springer, Heidelberg (2013). doi:10.1007/978-3-642-45221-5_32

    Chapter  Google Scholar 

  18. Janota, M., Klieber, W., Marques-Silva, J.P., Clarke, E.M.: Solving QBF with counterexample guided refinement. Artif. Intell. 234, 1–25 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kleine Büning, H., Bubeck, U.: Theory of quantified Boolean formulas. In: Handbook of Satisfiability, pp. 735–760. IOS Press (2009)

    Google Scholar 

  20. Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified Boolean formulas. Inf. Comput. 117(1), 12–18 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kullmann, O.: On a generalization of extended resolution. Discrete Appl. Math. 96–97, 149–176 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lonsing, F., Egly, U.: DepQBF 6.0: a search-based QBF solver beyond traditional QCDCL. CoRR abs/1702.08256 (2017)

    Google Scholar 

  23. Slivovsky, F., Szeider, S.: Variable dependencies and Q-resolution. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 269–284. Springer, Cham (2014). doi:10.1007/978-3-319-09284-3_21

    Google Scholar 

  24. Van Gelder, A.: Contributions to the theory of practical quantified Boolean formula solving. In: Milano, M. (ed.) CP 2012. LNCS, pp. 647–663. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33558-7_47

    Chapter  Google Scholar 

  25. Wetzler, N.D., Heule, M.J.H., Hunt Jr., W.A.: DRAT-trim: efficient checking and trimming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 422–429. Springer, Cham (2014). doi:10.1007/978-3-319-09284-3_31

    Google Scholar 

  26. Zhang, L., Malik, S.: Conflict driven learning in a quantified Boolean satisfiability solver. In: Proceedings of the 2002 IEEE/ACM International Conference on Computer-Aided Design (ICCAD 2002), pp. 442–449. ACM/IEEE Computer Society (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Kiesl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kiesl, B., Heule, M.J.H., Seidl, M. (2017). A Little Blocked Literal Goes a Long Way. In: Gaspers, S., Walsh, T. (eds) Theory and Applications of Satisfiability Testing – SAT 2017. SAT 2017. Lecture Notes in Computer Science(), vol 10491. Springer, Cham. https://doi.org/10.1007/978-3-319-66263-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66263-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66262-6

  • Online ISBN: 978-3-319-66263-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics