Advertisement

On Tackling the Limits of Resolution in SAT Solving

  • Alexey Ignatiev
  • Antonio Morgado
  • Joao Marques-Silva
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10491)

Abstract

The practical success of Boolean Satisfiability (SAT) solvers stems from the CDCL (Conflict-Driven Clause Learning) approach to SAT solving. However, from a propositional proof complexity perspective, CDCL is no more powerful than the resolution proof system, for which many hard examples exist. This paper proposes a new problem transformation, which enables reducing the decision problem for formulas in conjunctive normal form (CNF) to the problem of solving maximum satisfiability over Horn formulas. Given the new transformation, the paper proves a polynomial bound on the number of MaxSAT resolution steps for pigeonhole formulas. This result is in clear contrast with earlier results on the length of proofs of MaxSAT resolution for pigeonhole formulas. The paper also establishes the same polynomial bound in the case of modern core-guided MaxSAT solvers. Experimental results, obtained on CNF formulas known to be hard for CDCL SAT solvers, show that these can be efficiently solved with modern MaxSAT solvers.

References

  1. 1.
    Abío, I., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: BDDs for pseudo-boolean constraints – revisited. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 61–75. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21581-0_7 CrossRefGoogle Scholar
  2. 2.
    Ansótegui, C., Bonet, M.L., Levy, J.: SAT-based MaxSAT algorithms. Artif. Intell. 196, 77–105 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ansótegui, C., Didier, F., Gabàs, J.: Exploiting the structure of unsatisfiable cores in MaxSAT. In: IJCAI, pp. 283–289 (2015)Google Scholar
  4. 4.
    Asín, R., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: Cardinality networks and their applications. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 167–180. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-02777-2_18 CrossRefGoogle Scholar
  5. 5.
    Asín, R., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: Cardinality networks: a theoretical and empirical study. Constraints 16(2), 195–221 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Atserias, A., Kolaitis, P.G., Vardi, M.Y.: Constraint propagation as a proof system. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 77–91. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-30201-8_9 CrossRefGoogle Scholar
  7. 7.
    Audemard, G., Katsirelos, G., Simon, L.: A restriction of extended resolution for clause learning SAT solvers. In: AAAI (2010)Google Scholar
  8. 8.
    Audemard, G., Lagniez, J.-M., Simon, L.: Improving glucose for incremental SAT solving with assumptions: application to MUS extraction. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 309–317. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39071-5_23 CrossRefGoogle Scholar
  9. 9.
    Bailleux, O., Boufkhad, Y.: Efficient CNF encoding of boolean cardinality constraints. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 108–122. Springer, Heidelberg (2003). doi: 10.1007/978-3-540-45193-8_8 CrossRefGoogle Scholar
  10. 10.
    Bailleux, O., Boufkhad, Y., Roussel, O.: New encodings of pseudo-boolean constraints into CNF. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 181–194. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-02777-2_19 CrossRefGoogle Scholar
  11. 11.
    Beame, P., Pitassi, T.: Simplified and improved resolution lower bounds. In: FOCS, pp. 274–282 (1996)Google Scholar
  12. 12.
    Berre, D.L., Parrain, A.: The Sat4j library, release 2.2. JSAT 7(2–3), 59–64 (2010)Google Scholar
  13. 13.
    Biere, A.: Picosat essentials. JSAT 4(2–4), 75–97 (2008)zbMATHGoogle Scholar
  14. 14.
    Biere, A.: Lingeling, plingeling and treengeling entering the SAT competition 2013. In: Balint, A., Belov, A., Heule, M., Järvisalo, M. (eds.) Proceedings of SAT Competition 2013, vol. B-2013-1, pp. 51–52. Department of Computer Science Series of Publications B, University of Helsinki (2013)Google Scholar
  15. 15.
    Biere, A.: Lingeling essentials, a tutorial on design and implementation aspects of the SAT solver lingeling. In: Pragmatics of SAT Workshop, p. 88 (2014)Google Scholar
  16. 16.
    Biere, A., Berre, D., Lonca, E., Manthey, N.: Detecting cardinality constraints in CNF. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 285–301. Springer, Cham (2014). doi: 10.1007/978-3-319-09284-3_22 Google Scholar
  17. 17.
    Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amsterdam (2009)zbMATHGoogle Scholar
  18. 18.
    Bonet, M.L., Levy, J., Manyà, F.: Resolution for Max-SAT. Artif. Intell. 171(8–9), 606–618 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Bryant, R.E., Beatty, D., Brace, K., Cho, K., Sheffler, T.: COSMOS: a compiled simulator for MOS circuits. In: DAC, pp. 9–16 (1987)Google Scholar
  20. 20.
    Buss, S.R.: Polynomial size proofs of the propositional pigeonhole principle. J. Symb. Log. 52(4), 916–927 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Buss, S.R., Turán, G.: Resolution proofs of generalized pigeonhole principles. Theor. Comput. Sci. 62(3), 311–317 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Chatalic, P., Simon, L.: Multiresolution for SAT checking. Int. J. Artif. Intell. Tools 10(4), 451–481 (2001)CrossRefGoogle Scholar
  23. 23.
    Chvátal, V., Szemerédi, E.: Many hard examples for resolution. J. ACM 35(4), 759–768 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Codish, M., Zazon-Ivry, M.: Pairwise cardinality networks. In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp. 154–172. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-17511-4_10 CrossRefGoogle Scholar
  26. 26.
    Cook, S.A.: A short proof of the pigeon hole principle using extended resolution. ACM SIGACT News 8(4), 28–32 (1976)CrossRefGoogle Scholar
  27. 27.
    Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. J. Symb. Log. 44(1), 36–50 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Cook, W.J., Coullard, C.R., Turán, G.: On the complexity of cutting-plane proofs. Discrete Appl. Math. 18(1), 25–38 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Davies, J., Bacchus, F.: Solving MAXSAT by solving a sequence of simpler SAT instances. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 225–239. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-23786-7_19 CrossRefGoogle Scholar
  30. 30.
    Davies, J., Bacchus, F.: Exploiting the power of mip solvers in maxsat. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 166–181. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39071-5_13 CrossRefGoogle Scholar
  31. 31.
    Davies, J., Bacchus, F.: Postponing optimization to speed up MAXSAT solving. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 247–262. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40627-0_21 CrossRefGoogle Scholar
  32. 32.
    Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satisfiability of propositional Horn formulae. J. Log. Program. 1(3), 267–284 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-24605-3_37 CrossRefGoogle Scholar
  34. 34.
    Eén, N., Sörensson, N.: Translating pseudo-Boolean constraints into SAT. JSAT 2(1–4), 1–26 (2006)zbMATHGoogle Scholar
  35. 35.
    Jan Elffers’ personal webpage. http://www.csc.kth.se/~elffers
  36. 36.
    Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006). doi: 10.1007/11814948_25 CrossRefGoogle Scholar
  37. 37.
    Goldberg, E.: Testing satisfiability of CNF formulas by computing a stable set of points. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 161–180. Springer, Heidelberg (2002). doi: 10.1007/3-540-45620-1_15 CrossRefGoogle Scholar
  38. 38.
    Goldberg, E.: Testing satisfiability of CNF formulas by computing a stable set of points. Ann. Math. Artif. Intell. 43(1), 65–89 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Haken, A.: The intractability of resolution. Theor. Comput. Sci. 39, 297–308 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Huang, J.: Extended clause learning. Artif. Intell. 174(15), 1277–1284 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
  42. 42.
    Ignatiev, A. Morgado, A., Marques-Silva, J.: On tackling the limits of resolution in SAT solving. CoRR, abs/1705.01477 (2017). https://arxiv.org/abs/1705.01477
  43. 43.
    Jabbour, S., Marques-Silva, J., Sais, L., Salhi, Y.: Enumerating prime implicants of propositional formulae in conjunctive normal form. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 152–165. Springer, Cham (2014). doi: 10.1007/978-3-319-11558-0_11 Google Scholar
  44. 44.
    Jovanović, D., Moura, L.: Cutting to the chase solving linear integer arithmetic. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 338–353. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22438-6_26 CrossRefGoogle Scholar
  45. 45.
    Jovanovic, D., de Moura, L.M.: Cutting to the chase - solving linear integer arithmetic. J. Autom. Reason. 51(1), 79–108 (2013)CrossRefzbMATHGoogle Scholar
  46. 46.
    Koshimura, M., Zhang, T., Fujita, H., Hasegawa, R.: QMaxSAT: a partial Max-SAT solver. JSAT 8(1/2), 95–100 (2012)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Larrosa, J., Heras, F., de Givry, S.: A logical approach to efficient Max-SAT solving. Artif. Intell. 172(2–3), 204–233 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Manquinho, V.M., Flores, P.F., Silva, J.P.M., Oliveira, A.L.: Prime implicant computation using satisfiability algorithms. In: ICTAI, pp. 232–239 (1997)Google Scholar
  49. 49.
    Marques-Silva, J., Ignatiev, A., Mencía, C., Peñaloza, R.: Efficient reasoning for inconsistent horn formulae. In: Michael, L., Kakas, A. (eds.) JELIA 2016. LNCS (LNAI), vol. 10021, pp. 336–352. Springer, Cham (2016). doi: 10.1007/978-3-319-48758-8_22 CrossRefGoogle Scholar
  50. 50.
    Marques-Silva, J., Planes, J.: On using unsatisfiability for solving maximum satisfiability. CoRR, abs/0712.1097 (2007). https://arxiv.org/abs/0712.1097
  51. 51.
    Martins, R., Joshi, S., Manquinho, V., Lynce, I.: Incremental cardinality constraints for MaxSAT. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 531–548. Springer, Cham (2014). doi: 10.1007/978-3-319-10428-7_39 Google Scholar
  52. 52.
    Martins, R., Manquinho, V., Lynce, I.: Open-WBO: a modular MaxSAT solver. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 438–445. Springer, Cham (2014). doi: 10.1007/978-3-319-09284-3_33 Google Scholar
  53. 53.
    Minoux, M.: LTUR: a simplified linear-time unit resolution algorithm for Horn formulae and computer implementation. Inf. Process. Lett. 29(1), 1–12 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Morgado, A., Dodaro, C., Marques-Silva, J.: Core-guided MaxSAT with soft cardinality constraints. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 564–573. Springer, Cham (2014). doi: 10.1007/978-3-319-10428-7_41 Google Scholar
  55. 55.
    Morgado, A., Heras, F., Liffiton, M.H., Planes, J., Marques-Silva, J.: Iterative and core-guided MaxSAT solving: a survey and assessment. Constraints 18(4), 478–534 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Morgado, A., Ignatiev, A., Marques-Silva, J.: MSCG: robust core-guided MaxSAT solving. JSAT 9, 129–134 (2015)MathSciNetGoogle Scholar
  57. 57.
    Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MaxSAT resolution. In: AAAI, pp. 2717–2723 (2014)Google Scholar
  58. 58.
    Nordström, J.: On the interplay between proof complexity and SAT solving. SIGLOG News 2(3), 19–44 (2015)Google Scholar
  59. 59.
    Ogawa, T., Liu, Y., Hasegawa, R., Koshimura, M., Fujita, H.: Modulo based CNF encoding of cardinality constraints and its application to MaxSAT solvers. In: ICTAI, pp. 9–17 (2013)Google Scholar
  60. 60.
    Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning SAT solvers as resolution engines. Artif. Intell. 175(2), 512–525 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Previti, A. Ignatiev, A. Morgado, A., Marques-Silva, J.: Prime compilation of non-clausal formulae. In: IJCAI, pp. 1980–1988 (2015)Google Scholar
  62. 62.
    Razborov, A.A.: Proof complexity of pigeonhole principles. In: Kuich, W., Rozenberg, G., Salomaa, A. (eds.) DLT 2001. LNCS, vol. 2295, pp. 100–116. Springer, Heidelberg (2002). doi: 10.1007/3-540-46011-X_8 CrossRefGoogle Scholar
  63. 63.
    Roorda, J.-W., Claessen, K.: A new SAT-based algorithm for symbolic trajectory evaluation. In: Borrione, D., Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, pp. 238–253. Springer, Heidelberg (2005). doi: 10.1007/11560548_19 CrossRefGoogle Scholar
  64. 64.
    Saikko, P., Berg, J., Järvisalo, M.: LMHS: a SAT-IP hybrid MaxSAT solver. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 539–546. Springer, Cham (2016). doi: 10.1007/978-3-319-40970-2_34 Google Scholar
  65. 65.
    Segerlind, N.: The complexity of propositional proofs. Bul. Symb. Logic 13(4), 417–481 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    Sinz, C.: Towards an optimal CNF encoding of boolean cardinality constraints. In: Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg (2005). doi: 10.1007/11564751_73 CrossRefGoogle Scholar
  67. 67.
    Soos, M.: Enhanced Gaussian elimination in DPLL-based SAT solvers. In: POS@SAT, pp. 2–14 (2010)Google Scholar
  68. 68.
    Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic problems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-02777-2_24 CrossRefGoogle Scholar
  69. 69.
    Urquhart, A.: Hard examples for resolution. J. ACM 34(1), 209–219 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  70. 70.
    Warners, J.P.: A linear-time transformation of linear inequalities into conjunctive normal form. Inf. Process. Lett. 68(2), 63–69 (1998)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alexey Ignatiev
    • 1
    • 2
  • Antonio Morgado
    • 1
  • Joao Marques-Silva
    • 1
  1. 1.LASIGE, Faculty of ScienceUniversity of LisbonLisbonPortugal
  2. 2.ISDCT SB RASIrkutskRussia

Personalised recommendations