Antibiotics in the Soil: Sources, Environmental Issues, and Bioremediation

Chapter
Part of the Soil Biology book series (SOILBIOL, volume 51)

Abstract

Enormous quantities of antibiotics have been released into the environment from different sources, pathways, and anthropogenic activities. The overuse and misuse of antibiotics and its recalcitrant nature to biological degradation make them persistent or pseudo-persistent in the environment and toxic to non-target flora and fauna including human beings. Phytoremediation in the broad sense offers a powerful technology for the removal of various contaminants form environment. Besides, the phytoremediation technologies are less utilized for the removal of antibiotics from soil. Therefore, there is rapid need of exploration and exploitation of newer plants facilitating efficient removal/degradation of antibiotics from soil.

References

  1. Adomas B, Antczak-Marecka J, Nalecz-Jawecki G, Piotrowicz-Cieslak AI (2013) Phytotoxicity of enrofloxacin soil pollutant to narrow-leaved lupin plant. Pol J Environ Stud 22:71–76Google Scholar
  2. Aga DS, Lenczewski M, Snow D, Muurinen J, Sallach JB, Wallace JS (2016) Challenges in the measurement of antibiotics and in evaluating their impacts in agroecosystems: A critical review. J Environ Qual 45:407–419CrossRefPubMedGoogle Scholar
  3. Alexy R, Kumpel T, Kümmerer K (2004) Assessment of degradation of 18 antibiotics in the closed bottle test. Chemosphere 57:505–512CrossRefPubMedGoogle Scholar
  4. Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J (2010) Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol 8:251–259CrossRefPubMedGoogle Scholar
  5. Arthur EL, Rice PJ, Rice PJ, Anderson TA, Baladi SM, Henderson KL, Coats JR (2005) Phytoremediation—an overview. Crit Rev Plant Sci 24:109–122CrossRefGoogle Scholar
  6. Bao YY, Zhou QX, Xie XJ (2008) Influence of tetracycline kind antibiotics on the control of wheat germination and root elongation. China Environ Sci 28:566–570Google Scholar
  7. Boonsaner M, Hawker DW (2015) Transfer of oxytetracycline from swine manure to three different aquatic plants: implications for human exposure. Chemosphere 122:176–182CrossRefPubMedGoogle Scholar
  8. Cui X, Qiao XL, Han CW, Wang Z (2008) Uptake of oxytetracycline and its phytotoxicity to lettuce. J Agro Environ Sci 27:1038–1042Google Scholar
  9. Dong L, Gao J, Xie X, Zhou Q (2012) DNA damage and biochemical toxicity of antibiotics in soil on the earthworm Eisenia fetida. Chemosphere 89:44–51CrossRefPubMedGoogle Scholar
  10. Du L, Liu W (2012) Occurrence, fate, and ecotoxicity of antibiotics in agro-ecosystems. A review. Agron Sustain Dev 32:309–327CrossRefGoogle Scholar
  11. Eggen T, Asp TN, Grave K, Hormazabal V (2011) Uptake and translocation of metformin, ciprofloxacin and narasin in forage-and crop plants. Chemosphere 85:26–33CrossRefPubMedGoogle Scholar
  12. Gahlawat S, Gauba P (2016) Phytoremediation of aspirin and tetracycline by Brassica juncea. Int J Phytoremediation 18:929–935CrossRefPubMedGoogle Scholar
  13. Gartiser S, Urich E, Alexy R, Kümmerer K (2007) Ultimate biodegradation and elimination of antibiotics in the inherent test. Chemosphere 67:604–613CrossRefPubMedGoogle Scholar
  14. Gómez-Sagasti MT, Epelde L, Alkorta I, Garbisu C (2016) Reflections on soil contamination research from a biologist’s point of view. Appl Soil Ecol 105:207–210CrossRefGoogle Scholar
  15. Gothwal R, Shashidhar T (2015) Antibiotic pollution in the environment: a review. Clean Soil Air Water 43:479–489CrossRefGoogle Scholar
  16. Gujarathi NP, Haney BJ, Linden JC (2005) Phytoremediation potential of Myriophyllum aquaticum and Pistia stratiotes to modify antibiotic growth promoters, tetracycline, and oxytetracycline, in aqueous wastewater systems. Int J Phytoremediation 7:99–112CrossRefPubMedGoogle Scholar
  17. Hawker DW, Cropp R, Boonsaner M (2013) Uptake of zwitterionic antibiotics by rice (Oryza sativa L.) in contaminated soil. J Hazard Mater 263:458–466CrossRefPubMedGoogle Scholar
  18. Hillis DG, Fletcher J, Solomon KR, Sibley PK (2011) Effects of ten antibiotics on seed germination and root elongation in three plant species. Arch Environ Contam Toxicol 60:220–232CrossRefPubMedGoogle Scholar
  19. Jechalke S, Heuer H, Siemens J, Amelung W, Smalla K (2014) Fate and effects of veterinary antibiotics in soil. Trends Microbiol 22:536–545CrossRefPubMedGoogle Scholar
  20. Jin CX, Chen QY, Sun RL, Zhou QX, Liu JJ (2009) Eco-toxic effects of sulfadiazine sodium, sulfamonomethoxine sodium and enrofloxacin on wheat, Chinese cabbage and tomato. Ecotoxicology 18:878–885CrossRefPubMedGoogle Scholar
  21. Kong WD, Zhu YG, Liang YC, Zhang J, Smith FA, Yang M (2007) Uptake of oxytetracycline and its phytotoxicity to alfalfa (Medicago sativa L.) Environ Pollut 147:187–193CrossRefPubMedGoogle Scholar
  22. Kümmerer K (2010) Pharmaceuticals in the environment. Annu Rev Environ Resour 35:57–75CrossRefGoogle Scholar
  23. Laxminarayan R, Duse A, Wattal C, Zaidi AK, Wertheim HF, Sumpradit N, Vlieghe E, Hara GL, Gould IM, Goossens H, Greko C (2013) Antibiotic resistance—the need for global solutions. Lancet Infect Dis 13:1057–1098CrossRefPubMedGoogle Scholar
  24. Liu F, Ying GG, Tao R, Zhao LL, Yang JF, Zhao LF (2009) Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities. Environ Pollut 157:1636–1642CrossRefPubMedGoogle Scholar
  25. Luciana M, Salvatore C, Maurizio F (2003) Phytotoxicity to and uptake of enrofloxacin in crop plants. Chemosphere 52:1233–1244CrossRefGoogle Scholar
  26. McEachran AD, Blackwell BR, Hanson JD, Wooten KJ, Mayer GD, Cox SB, Smith PN (2015) Antibiotics, bacteria, and antibiotic resistance genes: aerial transport from cattle feed yards via particulate matter. Environ Health Perspect 123:337PubMedPubMedCentralGoogle Scholar
  27. Pan M, Chu LM (2016) Phytotoxicity of veterinary antibiotics to seed germination and root elongation of crops. Ecotoxicol Environ Saf 126:228–237CrossRefPubMedGoogle Scholar
  28. Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39CrossRefPubMedGoogle Scholar
  29. Pruden A, Larsson DJ, Amézquita A, Collignon P, Brandt KK, Graham DW, Lazorchak JM, Suzuki S, Silley P, Snape JR, Topp E (2013) Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environ Health Perspect 121:878–885CrossRefPubMedPubMedCentralGoogle Scholar
  30. Rodríguez-Rodríguez CE, Garcia-Galan MJ, Blanquez P, Diaz-Cruz MS, Barcelo D, Caminal G, Vicent T (2012) Continuous degradation of a mixture of sulfonamides by Trametes versicolor and identification of metabolites from sulfapyridine and sulfathiazole. J Hazard Mater 213–214:347–354CrossRefPubMedGoogle Scholar
  31. Roig B, D’Aco V (2016) Distribution of pharmaceutical residues in the environment. In: Hester RE, Harrison RM (eds) Pharmaceuticals in the environment. Royal Society of Chemistry, Cambridge, pp 34–69Google Scholar
  32. Sallach JB, Zhang Y, Hodges L, Snow D, Li X, Bartelt-Hunt S (2015) Concomitant uptake of antimicrobials and Salmonella in soil and into lettuce following wastewater irrigation. Environ Pollut 197:269–277CrossRefPubMedGoogle Scholar
  33. Sengupta A, Sarkar D, Das P, Panja S, Parikh C, Ramanathan D, Bagley S, Datta R (2016) Tetracycline uptake and metabolism by vetiver grass (Chrysopogon zizanioides L. Nash). Environ Sci Pollut Res 23:24880–24889CrossRefGoogle Scholar
  34. Singh SK, Khajuria R, Kaur L (2017) Biodegradation of ciprofloxacin by white rot fungus Pleurotus ostreatus. 3 Biotech 7:69CrossRefPubMedGoogle Scholar
  35. Tasho RP, Cho JY (2016) Veterinary antibiotics in animal waste, its distribution in soil and uptake by plants: a review. Sci Total Environ 563:366–376CrossRefPubMedGoogle Scholar
  36. Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, Teillant A, Laxminarayan R (2015) Global trends in antimicrobial use in food animals. Proc Natl Acad Sci USA 112:5649–5654CrossRefPubMedPubMedCentralGoogle Scholar
  37. Wang FH, Qiao M, Chen Z, Su JQ, Zhu YG (2015) Antibiotic resistance genes in manure-amended soil and vegetables at harvest. J Hazard Mater 299:215–221CrossRefPubMedGoogle Scholar
  38. Wei X, Wu SC, Nie XP, Yediler A, Wong MH (2009) The effects of residual tetracycline on soil enzymatic activities and plant growth. J Environ Sci Health Part B 44:461–471CrossRefGoogle Scholar
  39. Xie XY, Zhang YQ, Li ZJ, Liang YC, Yao JH, Zhang SQ (2009) Cultivar differences in toxic effects of oxytetracycline on wheat (Triticum durum). Asian J Ecotoxicol 4:577–583Google Scholar
  40. Zhao Q, Wang Y, Wang S, Wang Z, Du XD, Jiang H, Xia X, Shen Z, Ding S, Wu C, Zhou B (2016) Prevalence and abundance of florfenicol and linezolid resistance genes in soils adjacent to swine feedlots. Sci Rep 6:32192CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of BotanyGovernment Vidarbha Institute of Science and HumanitiesAmravatiIndia

Personalised recommendations