Skip to main content

Complexity, Risk, and Technoscience

  • Chapter
  • First Online:
Sustainable Risk Management

Part of the book series: Strategies for Sustainability ((STSU))

  • 1289 Accesses

Abstract

The article starts with an introduction to the foundations of complex dynamical systems. Together with modern computational tools, complex dynamical systems open avenues to model complex social systems (e.g., energy, mobility, urbanization, nutrition, financial markets, and communication). They are cross-over to specialized disciplines of science and need interdisciplinary studies in systems science and technoscience (1). In sociotechnical systems, information and communication technology (ICT) is growing together with societal infrastructures (e.g., smart grids, and smart cities), in order to handle the complexity of human civilization (2). In the age of big data, information and communication technologies (ICT) promises support of knowledge sharing through global online participation. But big data technologies only deliver technical support, no competence of interdisciplinary problem solving. Increasing complexity of our civilization needs reflection on the foundations and laws of systems dynamics which is considered in chap. (3) in order to guarantee safety and reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Berners-Lee, T. (1999). Weaving the web: The original design and ultimate destiny of the world wide web by the inventor. San Francisco.

    Google Scholar 

  • Cyber-Physical Systems. (2008). Program announcements & information. The national science foundation. 4201 Wilson Bouleward, Arlington, Virginia 22230, USA. (2008-09-30).

    Google Scholar 

  • Embrechts, P., Klüppelberg, C., & Mikosch, T. (2003). Modeling extremal events for insurance and finance (4th ed.). Springer: Berlin.

    Google Scholar 

  • Gershenfeld, N. (1998). The nature of mathematical modeling. Cambridge: Cambridge University Press.

    Google Scholar 

  • Goodwin, R. M. (1990). Chaotic economic dynamics. Oxford: Clarendon Press.

    Book  Google Scholar 

  • Hansmann, U. (2001). Pervasive computing handbook. Berlin: Springer.

    Book  Google Scholar 

  • Lee, E. (2008). Cyber-physical systems: Design challenges. University of California, Berkeley Technical Report No. UCB/EECS-2008-8.

    Google Scholar 

  • Lotka, A. J. (1956). Elements of mathematical biology. Dover Publications: New York. (reprint of the first publication 1924).

    Google Scholar 

  • Mainzer, K. (2014). Die Berechnung der Welt Von der Weltformel zu Big Data. München: C.H. Beck.

    Book  Google Scholar 

  • Mainzer, K., & Chua, L. O. (2013). Local activity principle. London: Imperial College Press.

    Book  Google Scholar 

  • Mainzer, K. (2007a). Thinking in complexity. The computational dynamics of matter, mind, and mankind. (5th ed.). Springer. New York. (Chinese translation of the 1st ed. 1998).

    Google Scholar 

  • Mainzer, K. (2007b). Der kreative Zufall. Wie das Neue in die Welt kommt, C.H. Beck Verlag: München. (Japanese translation 2010).

    Google Scholar 

  • Mandelbrot, B. B., & Hudson, R. L. (2004). The (mis)behavior of markets. A fractal view of risk, ruin, and reward. Basic Books: New York.

    Google Scholar 

  • Mayer-Schönberger, V., & Cukier, K. (2013). Big data. A revolution that will transform how we live, work and think. JohnMurray: London.

    Google Scholar 

  • McCauley, J. L. (2004). Dynamics of markets econophysics and finance. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Scheinkman, J. A., & Woodford, M. (2001). Self-organized criticality and economic fluctuations. In American economic review (pp. 417–421).

    Google Scholar 

  • Wedde, H. J., Lehnhoff, S., Rehtanz, C., & Krause, O. (2008). Von eingebetteten Systemen zu Cyber-Physical Systems. Eine neue Forschungsdimension für verteilte eingebettete Realzeitsysteme. Pearl 2008–Informatik Aktuell. Aktuelle Anwendungen in Technik und Wirtschaft 2007 12 2008.

    Google Scholar 

  • Weiser, M. (1991). The computer for the 21st century. Scientific American, 9, 66–75.

    Google Scholar 

  • Yang, X.-S. (2008). Mathematical modeling for earth sciences. Dudedin Academic.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Mainzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mainzer, K. (2018). Complexity, Risk, and Technoscience. In: Wilderer, P., Renn, O., Grambow, M., Molls, M., Mainzer, K. (eds) Sustainable Risk Management. Strategies for Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-319-66233-6_19

Download citation

Publish with us

Policies and ethics