Skip to main content

Microparticles: Surrogate Markers and Promoters of Cardiovascular Diseases

  • Chapter
  • First Online:
Platelets, Haemostasis and Inflammation

Part of the book series: Cardiac and Vascular Biology ((Abbreviated title: Card. vasc. biol.,volume 5))

  • 930 Accesses

Abstract

Microparticles are small cell vesicles which are released from several different cells e.g. during cell activation and cellular stress and that can be quantified using flow cytometry. Several studies have found that circulating microparticles can be used as biomarkers indicating the state of activation of the corresponding maternal cells. However, there is strong evidence that besides their diagnostic value mircoparticles furthermore function as circulating vectors transferring biological information from the cells they initially were released to distinct target cells.

This chapter aims to briefly summarize the role of microparticles in cardiovascular diseases such as coronary heart diseases, arterial hypertension, or atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Yuana Y, Sturk A, Nieuwland R. Extracellular vesicles in physiological and pathological conditions. Blood Rev. 2012;27:31–9.

    Article  PubMed  CAS  Google Scholar 

  2. Hugel B, Martinez MC, Kunzelmann C, Freyssinet JM. Membrane microparticles: two sides of the coin. Physiology (Bethesda). 2005;20:22–7.

    CAS  Google Scholar 

  3. Orozco AF, Lewis DE. Flow cytometric analysis of circulating microparticles in plasma. Cytometry A. 2010;77:502–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Wolf P. The nature and significance of platelet products in human plasma. Br J Haematol. 1967;13:269–88.

    Article  CAS  PubMed  Google Scholar 

  5. Wakefield TW, Myers DD, Henke PK. Mechanisms of venous thrombosis and resolution. Arterioscler Thromb Vasc Biol. 2008;28:387–91.

    Article  CAS  PubMed  Google Scholar 

  6. Ogura H, Tanaka H, Koh T, Fujita K, Fujimi S, Nakamori Y, Hosotsubo H, Kuwagata Y, Shimazu T, Sugimoto H. Enhanced production of endothelial microparticles with increased binding to leukocytes in patients with severe systemic inflammatory response syndrome. J Trauma. 2004;56:823–30. discussion 830-821

    Article  PubMed  Google Scholar 

  7. Bank IE, Timmers L, Gijsberts CM, Zhang YN, Mosterd A, Wang JW, Chan MY, De Hoog V, Lim SK, Sze SK, Lam CS, De Kleijn DP. The diagnostic and prognostic potential of plasma extracellular vesicles for cardiovascular disease. Expert Rev Mol Diagn. 2015;15:1577–88.

    Article  PubMed  CAS  Google Scholar 

  8. van Es N, Bleker S, Sturk A, Nieuwland R. Clinical significance of tissue factor-exposing microparticles in arterial and venous thrombosis. Semin Thromb Hemost. 2015;41:718–27.

    Article  PubMed  CAS  Google Scholar 

  9. Fink K, Schwarz M, Feldbrugge L, Sunkomat JN, Schwab T, Bourgeois N, Olschewski M, von Zur MC, Bode C, Busch HJ. Severe endothelial injury and subsequent repair in patients after successful cardiopulmonary resuscitation. Crit Care. 2010;14:R104.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fink K, Feldbrugge L, Schwarz M, Bourgeois N, Helbing T, Bode C, Schwab T, Busch HJ. Circulating annexin v positive microparticles in patients after successful cardiopulmonary resuscitation. Crit Care. 2011;15:R251.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Diehl P, Fricke A, Sander L, Stamm J, Bassler N, Htun N, Ziemann M, Helbing T, El-Osta A, Jowett JB, Peter K. Microparticles: major transport vehicles for distinct micrornas in circulation. Cardiovasc Res. 2012;93:633–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mause SF, Weber C. Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ Res. 2010;107:1047–57.

    Article  CAS  PubMed  Google Scholar 

  13. Jy W, Minagar A, Jimenez JJ, Sheremata WA, Mauro LM, Horstman LL, Bidot C, Ahn YS. Endothelial microparticles (emp) bind and activate monocytes: elevated emp-monocyte conjugates in multiple sclerosis. Front Biosci. 2004;9:3137–44.

    Article  CAS  PubMed  Google Scholar 

  14. Barry OP, Pratico D, Savani RC, FitzGerald GA. Modulation of monocyte-endothelial cell interactions by platelet microparticles. J Clin Invest. 1998;102:136–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sabatier F, Roux V, Anfosso F, Camoin L, Sampol J, Dignat-George F. Interaction of endothelial microparticles with monocytic cells in vitro induces tissue factor-dependent procoagulant activity. Blood. 2002;99:3962–70.

    Article  CAS  PubMed  Google Scholar 

  16. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation. 2002;105:1135–43.

    Article  CAS  PubMed  Google Scholar 

  17. Parrillo JE. Inflammatory cardiomyopathy (myocarditis): which patients should be treated with anti-inflammatory therapy? Circulation. 2001;104:4–6.

    Article  CAS  PubMed  Google Scholar 

  18. Diehl P, Nagy F, Sossong V, Helbing T, Beyersdorf F, Olschewski M, Bode C, Moser M. Increased levels of circulating microparticles in patients with severe aortic valve stenosis. Thromb Haemost. 2008;99:711–9.

    Article  CAS  PubMed  Google Scholar 

  19. Adamopoulos S, Parissis J, Kroupis C, Georgiadis M, Karatzas D, Karavolias G, Koniavitou K, Coats AJ, Kremastinos DT. Physical training reduces peripheral markers of inflammation in patients with chronic heart failure. Eur Heart J. 2001;22:791–7.

    Article  CAS  PubMed  Google Scholar 

  20. Diehl P, Aleker M, Helbing T, Sossong V, Germann M, Sorichter S, Bode C, Moser M. Increased platelet, leukocyte and endothelial microparticles predict enhanced coagulation and vascular inflammation in pulmonary hypertension. J Thromb Thrombolysis. 2011;31:173–9.

    Article  PubMed  Google Scholar 

  21. Massberg S, Brand K, Gruner S, Page S, Muller E, Muller I, Bergmeier W, Richter T, Lorenz M, Konrad I, Nieswandt B, Gawaz M. A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J Exp Med. 2002;196:887–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chironi G, Simon A, Hugel B, Del Pino M, Gariepy J, Freyssinet JM, Tedgui A. Circulating leukocyte-derived microparticles predict subclinical atherosclerosis burden in asymptomatic subjects. Arterioscler Thromb Vasc Biol. 2006;26:2775–80.

    Article  CAS  PubMed  Google Scholar 

  23. May AE, Seizer P, Gawaz M. Platelets: inflammatory firebugs of vascular walls. Arterioscler Thromb Vasc Biol. 2008;28:s5–10.

    Article  CAS  PubMed  Google Scholar 

  24. Zeiger F, Stephan S, Hoheisel G, Pfeiffer D, Ruehlmann C, Koksch M. P-selectin expression, platelet aggregates, and platelet-derived microparticle formation are increased in peripheral arterial disease. Blood Coagul Fibrinolysis. 2000;11:723–8.

    Article  CAS  PubMed  Google Scholar 

  25. Tan KT, Tayebjee MH, Lynd C, Blann AD, Lip GY. Platelet microparticles and soluble p selectin in peripheral artery disease: relationship to extent of disease and platelet activation markers. Ann Med. 2005;37:61–6.

    Article  CAS  PubMed  Google Scholar 

  26. Goldstein LB, Adams R, Alberts MJ, Appel LJ, Brass LM, Bushnell CD, Culebras A, Degraba TJ, Gorelick PB, Guyton JR, Hart RG, Howard G, Kelly-Hayes M, Nixon JV, Sacco RL. Primary prevention of ischemic stroke: a guideline from the american heart association/american stroke association stroke council: cosponsored by the atherosclerotic peripheral vascular disease interdisciplinary working group; cardiovascular nursing council; clinical cardiology council; nutrition, physical activity, and metabolism council; and the quality of care and outcomes research interdisciplinary working group: The american academy of neurology affirms the value of this guideline. Stroke. 2006;37:1583–633.

    Article  PubMed  Google Scholar 

  27. Sarlon-Bartoli G, Bennis Y, Lacroix R, Piercecchi-Marti MD, Bartoli MA, Arnaud L, Mancini J, Boudes A, Sarlon E, Thevenin B, Leroyer AS, Squarcioni C, Magnan PE, Dignat-George F, Sabatier F. Plasmatic level of leukocyte-derived microparticles is associated with unstable plaque in asymptomatic patients with high-grade carotid stenosis. J Am Coll Cardiol. 2013;62:1436–41.

    Article  CAS  PubMed  Google Scholar 

  28. Simak J, Gelderman MP, Yu H, Wright V, Baird AE. Circulating endothelial microparticles in acute ischemic stroke: a link to severity, lesion volume and outcome. J Thromb Haemost. 2006;4:1296–302.

    Article  CAS  PubMed  Google Scholar 

  29. Rautou PE, Vion AC, Amabile N, Chironi G, Simon A, Tedgui A, Boulanger CM. Microparticles, vascular function, and atherothrombosis. Circ Res. 2011;109:593–606.

    Article  CAS  PubMed  Google Scholar 

  30. Koga H, Sugiyama S, Kugiyama K, Watanabe K, Fukushima H, Tanaka T, Sakamoto T, Yoshimura M, Jinnouchi H, Ogawa H. Elevated levels of ve-cadherin-positive endothelial microparticles in patients with type 2 diabetes mellitus and coronary artery disease. J Am Coll Cardiol. 2005;45:1622–30.

    Article  CAS  PubMed  Google Scholar 

  31. Werner N, Wassmann S, Ahlers P, Kosiol S, Nickenig G. Circulating cd31+/annexin v+ apoptotic microparticles correlate with coronary endothelial function in patients with coronary artery disease. Arterioscler Thromb Vasc Biol. 2006;26:112–6.

    Article  CAS  PubMed  Google Scholar 

  32. Sinning JM, Losch J, Walenta K, Bohm M, Nickenig G, Werner N. Circulating cd31+/annexin v+ microparticles correlate with cardiovascular outcomes. Eur Heart J. 2011;32:2034–41.

    Article  CAS  PubMed  Google Scholar 

  33. Bernal-Mizrachi L, Jy W, Jimenez JJ, Pastor J, Mauro LM, Horstman LL, de Marchena E, Ahn YS. High levels of circulating endothelial microparticles in patients with acute coronary syndromes. Am Heart J. 2003;145:962–70.

    Article  PubMed  Google Scholar 

  34. Min PK, Cho M, Hong SY, Kim JY, Choi EY, Yoon YW, Lee BK, Hong BK, Rim SJ, Kwon HM. Circulating microparticles and coronary plaque components assessed by virtual histology intravascular ultrasound of the target lesion in patients with stable angina. PLoS One. 2016;11:e0148128.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Frossard M, Fuchs I, Leitner JM, Hsieh K, Vlcek M, Losert H, Domanovits H, Schreiber W, Laggner AN, Jilma B. Platelet function predicts myocardial damage in patients with acute myocardial infarction. Circulation. 2004;110:1392–7.

    Article  PubMed  Google Scholar 

  36. Morel O, Hugel B, Jesel L, Mallat Z, Lanza F, Douchet MP, Zupan M, Chauvin M, Cazenave JP, Tedgui A, Freyssinet JM, Toti F. Circulating procoagulant microparticles and soluble gpv in myocardial infarction treated by primary percutaneous transluminal coronary angioplasty. A possible role for gpiib-iiia antagonists. J Thromb Haemost. 2004;2:1118–26.

    Article  CAS  PubMed  Google Scholar 

  37. Stepien E, Stankiewicz E, Zalewski J, Godlewski J, Zmudka K, Wybranska I. Number of microparticles generated during acute myocardial infarction and stable angina correlates with platelet activation. Arch Med Res. 2012;43:31–5.

    Article  PubMed  Google Scholar 

  38. Boulanger CM, Scoazec A, Ebrahimian T, Henry P, Mathieu E, Tedgui A, Mallat Z. Circulating microparticles from patients with myocardial infarction cause endothelial dysfunction. Circulation. 2001;104:2649–52.

    Article  CAS  PubMed  Google Scholar 

  39. Chong AY, Blann AD, Patel J, Freestone B, Hughes E, Lip GY. Endothelial dysfunction and damage in congestive heart failure: relation of flow-mediated dilation to circulating endothelial cells, plasma indexes of endothelial damage, and brain natriuretic peptide. Circulation. 2004;110:1794–8.

    Article  PubMed  Google Scholar 

  40. Katz SD, Hryniewicz K, Hriljac I, Balidemaj K, Dimayuga C, Hudaihed A, Yasskiy A. Vascular endothelial dysfunction and mortality risk in patients with chronic heart failure. Circulation. 2005;111:310–4.

    Article  PubMed  Google Scholar 

  41. Fujisue K, Sugiyama S, Matsuzawa Y, Akiyama E, Sugamura K, Matsubara J, Kurokawa H, Maeda H, Hirata Y, Kusaka H, Yamamoto E, Iwashita S, Sumida H, Sakamoto K, Tsujita K, Kaikita K, Hokimoto S, Matsui K, Ogawa H. Prognostic significance of peripheral microvascular endothelial dysfunction in heart failure with reduced left ventricular ejection fraction. Circ J. 2015;79:2623–31.

    Article  PubMed  Google Scholar 

  42. Nozaki T, Sugiyama S, Sugamura K, Ohba K, Matsuzawa Y, Konishi M, Matsubara J, Akiyama E, Sumida H, Matsui K, Jinnouchi H, Ogawa H. Prognostic value of endothelial microparticles in patients with heart failure. Eur J Heart Fail. 2010;12:1223–8.

    Article  PubMed  Google Scholar 

  43. Berezin AE, Kremzer AA, Martovitskaya YV, Berezina TA, Samura TA. The utility of biomarker risk prediction score in patients with chronic heart failure. Clin Hypertens. 2015;22:3.

    Article  PubMed  Google Scholar 

  44. Kannel WB, Dawber TR, Kagan A, Revotskie N, Stokes J 3rd. Factors of risk in the development of coronary heart disease—six year follow-up experience. The framingham study. Ann Intern Med. 1961;55:33–50.

    Article  CAS  PubMed  Google Scholar 

  45. Dharmashankar K, Widlansky ME. Vascular endothelial function and hypertension: insights and directions. Curr Hypertens Rep. 2010;12:448–55.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Libby P. Inflammation in atherosclerosis. Nature. 2002;420:868–74.

    Article  CAS  PubMed  Google Scholar 

  47. Preston RA, Jy W, Jimenez JJ, Mauro LM, Horstman LL, Valle M, Aime G, Ahn YS. Effects of severe hypertension on endothelial and platelet microparticles. Hypertension. 2003;41:211–7.

    Article  CAS  PubMed  Google Scholar 

  48. Hsu CY, Huang PH, Chiang CH, Leu HB, Huang CC, Chen JW, Lin SJ. Increased circulating endothelial apoptotic microparticle to endothelial progenitor cell ratio is associated with subsequent decline in glomerular filtration rate in hypertensive patients. PLoS One. 2013;8:e68644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ehlenbach WJ, Barnato AE, Curtis JR, Kreuter W, Koepsell TD, Deyo RA, Stapleton RD. Epidemiologic study of in-hospital cardiopulmonary resuscitation in the elderly. N Engl J Med. 2009;361:22–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Adams JA. Endothelium and cardiopulmonary resuscitation. Crit Care Med. 2006;34:S458–65.

    Article  PubMed  Google Scholar 

  51. Adrie C, Laurent I, Monchi M, Cariou A, Dhainaou JF, Spaulding C. Postresuscitation disease after cardiac arrest: a sepsis-like syndrome? Curr Opin Crit Care. 2004;10:208–12.

    Article  PubMed  Google Scholar 

  52. Fink K, Moebes M, Vetter C, Bourgeois N, Schmid B, Bode C, Helbing T, Busch HJ. Selenium prevents microparticle-induced endothelial inflammation in patients after cardiopulmonary resuscitation. Crit Care. 2015;19:58.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Diehl MD, PhD .

Editor information

Editors and Affiliations

Compliance with Ethical Standards

Compliance with Ethical Standards

  • Conflict of Interest: Martin Moser and Philipp Diehl declares that they have no conflict of interest.

  • Ethical Approval: This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moser, M., Diehl, P. (2017). Microparticles: Surrogate Markers and Promoters of Cardiovascular Diseases. In: Zirlik, A., Bode, C., Gawaz, M. (eds) Platelets, Haemostasis and Inflammation. Cardiac and Vascular Biology, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-66224-4_8

Download citation

Publish with us

Policies and ethics