Skip to main content

Unobtrusive Technological Approach for Continuous Behavior Change Detection Toward Better Adaptation of Clinical Assessments and Interventions for Elderly People

Part of the Lecture Notes in Computer Science book series (LNISA,volume 10461)

Abstract

Behavior change indicates continuous decline in physical, cognitive and emotional status of elderly people. Early detection of behavior change is major enabler for service providers to adapt their services and improve the quality of life of elderly people. Nowadays, existing psychogeriatric scales and questionnaires are insufficient to observe all possible changes at a daily basis. Therefore, we propose a technological approach for behavior change detection, that employs unobtrusive ambient technologies to follow up elderly people over long periods. In fact, we study significant behavior change indicators (e.g., sleep impairments, visits and go out) and investigate statistical techniques that distinguish transient and continuous changes in monitored behavior. Furthermore, we present a preliminary validation of our approach through results based on correlations between our technological observations and medical observations of two-year nursing home deployment.

Keywords

  • Behavior change detection
  • Elderly people
  • Unobtrusive technologies
  • Statistical analysis techniques

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-66188-9_3
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-66188-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

References

  1. Holsinger, T., et al.: Does this patient have dementia? JAMA 297(21), 2391–2404 (2007)

    CrossRef  Google Scholar 

  2. Cao, L.: In-depth behavior understanding and use: the behavior informatics approach. Inf. Sci. 180(17), 3067–3085 (2010)

    CrossRef  Google Scholar 

  3. Mathias, S., et al.: Balance in elderly patients: the “get-up and go” test. Arch. Phys. Med. Rehabil. 67(6), 387–389 (1986)

    Google Scholar 

  4. Cockrell, J.R., Folstein, M.F.: Mini-mental state examination. Principles and Practice of Geriatric Psychiatry, pp. 140–141 (2002)

    Google Scholar 

  5. Vellas, B., et al.: The mini nutritional assessment (mna) and its use in grading the nutritional state of elderly patients. Nutrition 15(2), 116–122 (1999)

    CrossRef  Google Scholar 

  6. Lafont, S., et al.: Relation entre performances cognitives globales et dépendance évaluée par la grille aggir. Revue d’épidémiologie et de santé publique 47(1), 7–17 (1999)

    Google Scholar 

  7. Barberger-Gateau, P., et al.: Instrumental activities of daily living as a screening tool for cognitive impairment and dementia in elderly community dwellers. J. Am. Geriatr. Soc. 40(11), 1129–1134 (1992)

    CrossRef  Google Scholar 

  8. Boockvar, K.S., Lachs, M.S.: Predictive value of nonspecific symptoms for acute illness in nursing home residents. J. Am. Geriatr. Soc. 51(8), 1111–1115 (2003)

    CrossRef  Google Scholar 

  9. Ridley, S.: The recognition and early management of critical illness. Ann. R. Coll. Surg. Engl. 87(5), 315 (2005)

    CrossRef  Google Scholar 

  10. Kaddachi, F., et al.: Technological approach for behavior change detection toward better adaptation of services for elderly people. BIOSTEC 2017, 96 (2017)

    Google Scholar 

  11. Reisberg, B., et al.: Behavioral pathology in alzheimer’s disease (behave-ad) rating scale. Int. Psychogeriatr. 8(S3), 301–308 (1997)

    CrossRef  Google Scholar 

  12. Bourke, A.K., et al.: Fall detection algorithms for real-world falls harvested from lumbar sensors in the elderly population: a machine learning approach. In: 2016 IEEE 38th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), pp. 3712–3715. IEEE (2016)

    Google Scholar 

  13. Aloulou, H., et al.: Deployment of assistive living technology in a nursing home environment: methods and lessons learned. BMC Med. Inform. Decis. Mak. 13(1), 42 (2013)

    MathSciNet  CrossRef  Google Scholar 

  14. Singtel: Monitor and watch you elderly family members’ daily activities with singtel’s smart home solutions (2017). https://www.singtelshop.com/smarthome-yuhua

  15. SeniorHome: Eva est une plateforme logicielle qui fonctione sur la base de capteurs repartis dans le domicile (2017). http://seniorhome.fr/

  16. Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Pers. Ubiquit. Comput. 19(1), 27–43 (2015)

    CrossRef  Google Scholar 

  17. Rantz, M., Skubic, M., Miller, S., Krampe, J.: Using technology to enhance aging in place. In: Helal, S., Mitra, S., Wong, J., Chang, C.K., Mokhtari, M. (eds.) ICOST 2008. LNCS, vol. 5120, pp. 169–176. Springer, Heidelberg (2008). doi:10.1007/978-3-540-69916-3_20

    CrossRef  Google Scholar 

  18. Hayes, T.L., et al.: Sleep habits in mild cognitive impairment. Alzheimer Dis. Assoc. Disord. 28(2), 145 (2014)

    MathSciNet  CrossRef  Google Scholar 

  19. Kaye, J., et al.: Unobtrusive measurement of daily computer use to detect mild cognitive impairment. Alzheimer’s Dement. 10(1), 10–17 (2014)

    CrossRef  Google Scholar 

  20. Hayes, T.L., et al.: Medication adherence in healthy elders: small cognitive changes make a big difference. J. Aging Health (2009)

    Google Scholar 

  21. Hodges, M.R., Kirsch, N.L., Newman, M.W., Pollack, M.E.: Automatic assessment of cognitive impairment through electronic observation of object usage. In: Floréen, P., Krüger, A., Spasojevic, M. (eds.) Pervasive 2010. LNCS, vol. 6030, pp. 192–209. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12654-3_12

    CrossRef  Google Scholar 

  22. Avvenuti, M., et al.: Non-intrusive patient monitoring of alzheimer’s disease subjects using wireless sensor networks. In: World Congress on Privacy, Security, Trust and the Management of e-Business. CONGRESS 2009, pp. 161–165. IEEE (2009)

    Google Scholar 

  23. Tolstikov, A., et al.: Eating activity primitives detection-a step towards ADL recognition. In: 10th International Conference on e-health Networking, Applications and Services. HealthCom 2008, pp. 35–41. IEEE (2008)

    Google Scholar 

  24. Allin, S., et al.: Toward the automatic assessment of behavioral distrubances of dementia (2003)

    Google Scholar 

  25. Magill, E., Blum, J.M.: Personalised ambient monitoring: supporting mental health at home. Advances in home care technologies: Results of the Match project, pp. 67–85 (2012)

    Google Scholar 

  26. Demiris, G., et al.: Older adults’ attitudes towards and perceptions of smart home technologies: a pilot study. Med. Inf. Internet Med. 29(2), 87–94 (2004)

    CrossRef  Google Scholar 

  27. Cummings, J.L., et al.: The neuropsychiatric inventory comprehensive assessment of psychopathology in dementia. Neurology 44(12), 2308–2308 (1994)

    CrossRef  Google Scholar 

  28. Parmelee, P.A., Katz, I.R.: Geriatric depression scale. J. Am. Geriatr. Soc. 38, 1379–1379 (1990)

    CrossRef  Google Scholar 

  29. Page, E.: Continuous inspection schemes. Biometrika 41(1/2), 100–115 (1954)

    MathSciNet  CrossRef  MATH  Google Scholar 

  30. Mesnil, B., Petitgas, P.: Detection of changes in time-series of indicators using cusum control charts. Aquat. Living Resour. 22(2), 187–192 (2009)

    CrossRef  Google Scholar 

  31. Taylor, W.A.: Change-point analysis: a powerful new tool for detecting changes. preprint http://www.variation.com/cpa/tech/changepoint.html (2000)

  32. Bland, J.M., Altman, D.G.: Comparing methods of measurement: why plotting difference against standard method is misleading. Lancet 346(8982), 1085–1087 (1995)

    CrossRef  Google Scholar 

  33. Krishef, C.H.: Fundamental Approaches to Sigle Subject Design and Analysis. Krieger, Malabar (1991)

    Google Scholar 

  34. City4Age: Elderly-friendly city services for active and healthy aging (2016). http://www.city4ageproject.eu/

Download references

Acknowledgement

We give our special thanks to Saint Vincent de Paul nursing home in Occagnes, France. Our deployment in this nursing home is also supported by VHP inter@ctive project and the Quality Of Life chair.

Our work is part of the European project City4Age that received funding from the Horizon 2020 research and innovation program under grant agreement number 689731.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Firas Kaddachi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kaddachi, F., Aloulou, H., Abdulrazak, B., Fraisse, P., Mokhtari, M. (2017). Unobtrusive Technological Approach for Continuous Behavior Change Detection Toward Better Adaptation of Clinical Assessments and Interventions for Elderly People. In: Mokhtari, M., Abdulrazak, B., Aloulou, H. (eds) Enhanced Quality of Life and Smart Living. ICOST 2017. Lecture Notes in Computer Science(), vol 10461. Springer, Cham. https://doi.org/10.1007/978-3-319-66188-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66188-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66187-2

  • Online ISBN: 978-3-319-66188-9

  • eBook Packages: Computer ScienceComputer Science (R0)