Unobtrusive Technological Approach for Continuous Behavior Change Detection Toward Better Adaptation of Clinical Assessments and Interventions for Elderly People

  • Firas KaddachiEmail author
  • Hamdi Aloulou
  • Bessam Abdulrazak
  • Philippe Fraisse
  • Mounir Mokhtari
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10461)


Behavior change indicates continuous decline in physical, cognitive and emotional status of elderly people. Early detection of behavior change is major enabler for service providers to adapt their services and improve the quality of life of elderly people. Nowadays, existing psychogeriatric scales and questionnaires are insufficient to observe all possible changes at a daily basis. Therefore, we propose a technological approach for behavior change detection, that employs unobtrusive ambient technologies to follow up elderly people over long periods. In fact, we study significant behavior change indicators (e.g., sleep impairments, visits and go out) and investigate statistical techniques that distinguish transient and continuous changes in monitored behavior. Furthermore, we present a preliminary validation of our approach through results based on correlations between our technological observations and medical observations of two-year nursing home deployment.


Behavior change detection Elderly people Unobtrusive technologies Statistical analysis techniques 



We give our special thanks to Saint Vincent de Paul nursing home in Occagnes, France. Our deployment in this nursing home is also supported by VHP inter@ctive project and the Quality Of Life chair.

Our work is part of the European project City4Age that received funding from the Horizon 2020 research and innovation program under grant agreement number 689731.


  1. 1.
    Holsinger, T., et al.: Does this patient have dementia? JAMA 297(21), 2391–2404 (2007)CrossRefGoogle Scholar
  2. 2.
    Cao, L.: In-depth behavior understanding and use: the behavior informatics approach. Inf. Sci. 180(17), 3067–3085 (2010)CrossRefGoogle Scholar
  3. 3.
    Mathias, S., et al.: Balance in elderly patients: the “get-up and go” test. Arch. Phys. Med. Rehabil. 67(6), 387–389 (1986)Google Scholar
  4. 4.
    Cockrell, J.R., Folstein, M.F.: Mini-mental state examination. Principles and Practice of Geriatric Psychiatry, pp. 140–141 (2002)Google Scholar
  5. 5.
    Vellas, B., et al.: The mini nutritional assessment (mna) and its use in grading the nutritional state of elderly patients. Nutrition 15(2), 116–122 (1999)CrossRefGoogle Scholar
  6. 6.
    Lafont, S., et al.: Relation entre performances cognitives globales et dépendance évaluée par la grille aggir. Revue d’épidémiologie et de santé publique 47(1), 7–17 (1999)Google Scholar
  7. 7.
    Barberger-Gateau, P., et al.: Instrumental activities of daily living as a screening tool for cognitive impairment and dementia in elderly community dwellers. J. Am. Geriatr. Soc. 40(11), 1129–1134 (1992)CrossRefGoogle Scholar
  8. 8.
    Boockvar, K.S., Lachs, M.S.: Predictive value of nonspecific symptoms for acute illness in nursing home residents. J. Am. Geriatr. Soc. 51(8), 1111–1115 (2003)CrossRefGoogle Scholar
  9. 9.
    Ridley, S.: The recognition and early management of critical illness. Ann. R. Coll. Surg. Engl. 87(5), 315 (2005)CrossRefGoogle Scholar
  10. 10.
    Kaddachi, F., et al.: Technological approach for behavior change detection toward better adaptation of services for elderly people. BIOSTEC 2017, 96 (2017)Google Scholar
  11. 11.
    Reisberg, B., et al.: Behavioral pathology in alzheimer’s disease (behave-ad) rating scale. Int. Psychogeriatr. 8(S3), 301–308 (1997)CrossRefGoogle Scholar
  12. 12.
    Bourke, A.K., et al.: Fall detection algorithms for real-world falls harvested from lumbar sensors in the elderly population: a machine learning approach. In: 2016 IEEE 38th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), pp. 3712–3715. IEEE (2016)Google Scholar
  13. 13.
    Aloulou, H., et al.: Deployment of assistive living technology in a nursing home environment: methods and lessons learned. BMC Med. Inform. Decis. Mak. 13(1), 42 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Singtel: Monitor and watch you elderly family members’ daily activities with singtel’s smart home solutions (2017).
  15. 15.
    SeniorHome: Eva est une plateforme logicielle qui fonctione sur la base de capteurs repartis dans le domicile (2017).
  16. 16.
    Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Pers. Ubiquit. Comput. 19(1), 27–43 (2015)CrossRefGoogle Scholar
  17. 17.
    Rantz, M., Skubic, M., Miller, S., Krampe, J.: Using technology to enhance aging in place. In: Helal, S., Mitra, S., Wong, J., Chang, C.K., Mokhtari, M. (eds.) ICOST 2008. LNCS, vol. 5120, pp. 169–176. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-69916-3_20 CrossRefGoogle Scholar
  18. 18.
    Hayes, T.L., et al.: Sleep habits in mild cognitive impairment. Alzheimer Dis. Assoc. Disord. 28(2), 145 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kaye, J., et al.: Unobtrusive measurement of daily computer use to detect mild cognitive impairment. Alzheimer’s Dement. 10(1), 10–17 (2014)CrossRefGoogle Scholar
  20. 20.
    Hayes, T.L., et al.: Medication adherence in healthy elders: small cognitive changes make a big difference. J. Aging Health (2009)Google Scholar
  21. 21.
    Hodges, M.R., Kirsch, N.L., Newman, M.W., Pollack, M.E.: Automatic assessment of cognitive impairment through electronic observation of object usage. In: Floréen, P., Krüger, A., Spasojevic, M. (eds.) Pervasive 2010. LNCS, vol. 6030, pp. 192–209. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-12654-3_12 CrossRefGoogle Scholar
  22. 22.
    Avvenuti, M., et al.: Non-intrusive patient monitoring of alzheimer’s disease subjects using wireless sensor networks. In: World Congress on Privacy, Security, Trust and the Management of e-Business. CONGRESS 2009, pp. 161–165. IEEE (2009)Google Scholar
  23. 23.
    Tolstikov, A., et al.: Eating activity primitives detection-a step towards ADL recognition. In: 10th International Conference on e-health Networking, Applications and Services. HealthCom 2008, pp. 35–41. IEEE (2008)Google Scholar
  24. 24.
    Allin, S., et al.: Toward the automatic assessment of behavioral distrubances of dementia (2003)Google Scholar
  25. 25.
    Magill, E., Blum, J.M.: Personalised ambient monitoring: supporting mental health at home. Advances in home care technologies: Results of the Match project, pp. 67–85 (2012)Google Scholar
  26. 26.
    Demiris, G., et al.: Older adults’ attitudes towards and perceptions of smart home technologies: a pilot study. Med. Inf. Internet Med. 29(2), 87–94 (2004)CrossRefGoogle Scholar
  27. 27.
    Cummings, J.L., et al.: The neuropsychiatric inventory comprehensive assessment of psychopathology in dementia. Neurology 44(12), 2308–2308 (1994)CrossRefGoogle Scholar
  28. 28.
    Parmelee, P.A., Katz, I.R.: Geriatric depression scale. J. Am. Geriatr. Soc. 38, 1379–1379 (1990)CrossRefGoogle Scholar
  29. 29.
    Page, E.: Continuous inspection schemes. Biometrika 41(1/2), 100–115 (1954)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Mesnil, B., Petitgas, P.: Detection of changes in time-series of indicators using cusum control charts. Aquat. Living Resour. 22(2), 187–192 (2009)CrossRefGoogle Scholar
  31. 31.
    Taylor, W.A.: Change-point analysis: a powerful new tool for detecting changes. preprint (2000)
  32. 32.
    Bland, J.M., Altman, D.G.: Comparing methods of measurement: why plotting difference against standard method is misleading. Lancet 346(8982), 1085–1087 (1995)CrossRefGoogle Scholar
  33. 33.
    Krishef, C.H.: Fundamental Approaches to Sigle Subject Design and Analysis. Krieger, Malabar (1991)Google Scholar
  34. 34.
    City4Age: Elderly-friendly city services for active and healthy aging (2016).

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Firas Kaddachi
    • 1
    Email author
  • Hamdi Aloulou
    • 1
  • Bessam Abdulrazak
    • 2
  • Philippe Fraisse
    • 1
  • Mounir Mokhtari
    • 3
  1. 1.Montpellier Laboratory of InformaticsRobotics and Microelectronics (LIRMM)MontpellierFrance
  2. 2.University of SherbrookeQuebecCanada
  3. 3.Institut Mines-Telecom (IMT)ParisFrance

Personalised recommendations