Precise Ultrasound Bone Registration with Learning-Based Segmentation and Speed of Sound Calibration

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10434)


Ultrasound imaging is increasingly used in navigated surgery and registration-based applications. However, spatial information quality in ultrasound is relatively inferior to other modalities. Main limiting factors for an accurate registration between ultrasound and other modalities are tissue deformation and speed of sound variation throughout the body. The bone surface in ultrasound is a landmark which is less affected by such geometric distortions. In this paper, we present a workflow to accurately register intra-operative ultrasound images to a reference pre-operative CT volume based on an automatic and real-time image processing pipeline. We show that a convolutional neural network is able to produce robust, accurate and fast bone segmentation of such ultrasound images. We also develop a dedicated method to perform online speed of sound calibration by focusing on the bone area and optimizing the appearance of steered compounded images. We provide extensive validation on both phantom and real cadaver data obtaining overall errors under one millimeter.


  1. 1.
    Hacihaliloglu, I., Abugharbieh, R., Hodgson, A., Rohling, R.: Automatic adaptive parameterization in local phase feature-based bone segmentation in ultrasound. Ultrasound Med. Biol. 37(10), 1689–1703 (2011)Google Scholar
  2. 2.
    Ozdemir, F., Ozkan, E., Goksel, O.: Graphical modeling of ultrasound propagation in tissue for automatic bone segmentation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 256–264. Springer, Cham (2016). doi: 10.1007/978-3-319-46723-8_30CrossRefGoogle Scholar
  3. 3.
    Baka, N., Leenstra, S., Van Walsum, T.: Machine learning based bone segmentation in ultrasound. In: CSI MICCAI Workshop (2016)Google Scholar
  4. 4.
    Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of IEEE Conference: CVPR, pp. 3431–3440 (2015)Google Scholar
  5. 5.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). doi: 10.1007/978-3-319-24574-4_28CrossRefGoogle Scholar
  6. 6.
    Jain, A.K., Taylor, R.H.: Understanding bone responses in b-mode ultrasound images and automatic bone surface extraction using a Bayesian probabilistic framework. In: Proceedings of SPIE Medical Imaging 2004, pp. 131–142 (2004)Google Scholar
  7. 7.
    Jaeger, M., Held, G., Preisser, S., Peeters, S., Grnig, M., Frenz, M.: Image-based method for in-vivo freehand ultrasound calibration. In: Proceedings of SPIE, vol. 9040 (2014)Google Scholar
  8. 8.
    Shin, H.C., Prager, R., Gomersall, H., Kingsbury, N., Treece, G., Gee, A.: Estimation of speed of sound in dual-layered media using medical ultrasound image deconvolution. Ultrasonics 50(7), 716–725 (2010)CrossRefGoogle Scholar
  9. 9.
    Wein, W., Khamene, A.: Image-based method for in-vivo freehand ultrasound calibration. In: Proceedings of SPIE, Medical Imaging 2008, vol. 6920 (2008)Google Scholar
  10. 10.
    Jones, D.R.: Direct global optimization algorithm. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization, pp. 431–440. Springer, Heidelberg (2001). doi: 10.1007/0-306-48332-7_93CrossRefGoogle Scholar
  11. 11.
    Wein, W., Karamalis, A., Baumgartner, A., Navab, N.: Automatic bone detection and soft tissue aware ultrasound-CT registration for computer-aided orthopedic surgery. IJCARS 10(6), 971–979 (2015)Google Scholar
  12. 12.
    He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1397–1409 (2013)CrossRefGoogle Scholar
  13. 13.
    Elfring, R., de la Fuente, M., Radermacher, K.: Assessment of optical localizer accuracy for computer aided surgery systems. Comput. Aided Surg. 15(1–3), 1–12 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.ImFusion GmbHMunichGermany
  2. 2.Computer Aided Medical Procedures (CAMP)TU MunichMunichGermany
  3. 3.Stryker Leibinger GmbH & Co. KGFreiburgGermany

Personalised recommendations