Advertisement

Fully Automated Segmentation-Based Respiratory Motion Correction of Multiplanar Cardiac Magnetic Resonance Images for Large-Scale Datasets

  • Matthew Sinclair
  • Wenjia Bai
  • Esther Puyol-Antón
  • Ozan Oktay
  • Daniel Rueckert
  • Andrew P. King
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10434)

Abstract

Cardiac magnetic resonance (CMR) can be used for quantitative analysis of heart function. However, CMR imaging typically involves acquiring 2D image planes during separate breath-holds, often resulting in misalignment of the heart between image planes in 3D. Accurate quantitative analysis requires a robust 3D reconstruction of the heart from CMR images, which is adversely affected by such motion artifacts. Therefore, we propose a fully automated method for motion correction of CMR planes using segmentations produced by fully convolutional neural networks (FCNs). FCNs are trained on 100 UK Biobank subjects to produce short-axis and long-axis segmentations, which are subsequently used in an iterative registration algorithm for correcting breath-hold induced motion artifacts. We demonstrate significant improvements in motion-correction over image-based registration, with strong correspondence to results obtained using manual segmentations. We also deploy our automatic method on 9,353 subjects in the UK Biobank database, demonstrating significant improvements in 3D plane alignment.

Notes

Acknowledgements

This work was funded by EPSRC grants EP/K030310/1 and EP/K030523/1. This research was conducted using the UK Biobank resource under Application Number 17806. The Titan X used for this research was donated by the NVIDIA Corporation.

References

  1. 1.
    Bai, W., Shi, W., De Marvao, A., et al.: A cardiac atlas built from high resolution MR images of 1000 + normal subjects and atlas-based analysis of cardiac shape and motion. Med. Image Anal. 26(1), 133–145 (2015)CrossRefGoogle Scholar
  2. 2.
    Bezdek, J., Hathaway, R.: Convergence of alternating optimization. Neural, Parallel Sci. Comput. 11(4), 351–368 (2003)MATHMathSciNetGoogle Scholar
  3. 3.
    Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)Google Scholar
  4. 4.
    Lötjönen, J., Pollari, M., Kivistö, S., Lauerma, K.: Correction of movement artifacts from 4-D cardiac short- and long-axis MR data. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3217, pp. 405–412. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-30136-3_50 CrossRefGoogle Scholar
  5. 5.
    McLeish, K., Hill, D., Atkinson, D., et al.: A study of the motion and deformation of the heart due to respiration. IEEE Trans. Med. Imaging 21(9), 1142–1150 (2002)CrossRefGoogle Scholar
  6. 6.
    Neumann, D., Grbi, S., John, M., et al.: Probabilistic sparse matching for robust 3D/3D fusion in minimally invasive surgery. IEEE Trans. Med. Imaging 34(1), 49–60 (2015)CrossRefGoogle Scholar
  7. 7.
    Petersen, S., Matthews, P., Francis, J., et al.: UK Biobank’s cardiovascular magnetic resonance protocol. J. Cardiovasc. Magn. Reson. 18(1), 8 (2016)CrossRefGoogle Scholar
  8. 8.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). doi: 10.1007/978-3-319-24574-4_28 CrossRefGoogle Scholar
  9. 9.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2014)Google Scholar
  10. 10.
    Su, Y., Tan, M.L., Lim, C.W., et al.: Automatic correction of motion artifacts in 4D left ventricle model reconstructed from MRI. Comput. Cardiol. 41, 705–708 (2014)Google Scholar
  11. 11.
    Tran, P.: A Fully Convolutional Neural Network for Cardiac Segmentation in Short-Axis MRI. CoRR (2016). http://arxiv.org/abs/1604.00494
  12. 12.
    Villard, B., Zacur, E., Dall’Armellina, E., Grau, V.: Correction of slice misalignment in multi-breath-hold cardiac MRI scans. In: Mansi, T., McLeod, K., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2016. LNCS, vol. 10124, pp. 30–38. Springer, Cham (2017). doi: 10.1007/978-3-319-52718-5_4 CrossRefGoogle Scholar
  13. 13.
    Zakkaroff, C., Radjenovic, A., Greenwood, J., Magee, D.: Stack alignment transform for misalignment correction in cardiac MR cine series. Technical report, University of Leeds (2012)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Matthew Sinclair
    • 1
    • 2
  • Wenjia Bai
    • 2
  • Esther Puyol-Antón
    • 1
  • Ozan Oktay
    • 2
  • Daniel Rueckert
    • 2
  • Andrew P. King
    • 1
  1. 1.Division of Imaging Sciences and Biomedical EngineeringKing’s College LondonLondonUK
  2. 2.Biomedical Image Analysis GroupImperial College LondonLondonUK

Personalised recommendations