Cell Lineage Tracing in Lens-Free Microscopy Videos

  • Markus RempflerEmail author
  • Sanjeev Kumar
  • Valentin Stierle
  • Philipp Paulitschke
  • Bjoern Andres
  • Bjoern H. Menze
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10434)


In vitro experiments with cell cultures are essential for studying growth and migration behaviour and thus, for gaining a better understanding of cancer progression and its treatment. While recent progress in lens-free microscopy (LFM) has rendered it an inexpensive tool for continuous monitoring of these experiments, there is only little work on analysing such time-lapse sequences.

We propose (1) a cell detector for LFM images based on residual learning, and (2) a probabilistic model based on moral lineage tracing that explicitly handles multiple detections and temporal successor hypotheses by clustering and tracking simultaneously. (3) We benchmark our method on several hours of LFM time-lapse sequences in terms of detection and tracking scores. Finally, (4) we demonstrate its effectiveness for quantifying cell population dynamics.


Lineage Tracing Residual Learning Cell Population Dynamics Hypothesis Graph Forest Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



With the support of the Technische Universität München – Institute for Advanced Study, funded by the German Excellence Initiative (and the European Union Seventh Framework Programme under grant agreement no. 291763).


  1. 1.
    Arbelle, A., Drayman, N., Bray, M., Alon, U., Carpenter, A., Raviv, T.R.: Analysis of high-throughput microscopy videos: catching up with cell dynamics. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 218–225. Springer, Cham (2015). doi: 10.1007/978-3-319-24574-4_26CrossRefGoogle Scholar
  2. 2.
    Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance: the clear mot metrics. EURASIP JIVP (1), 1–10 (2008). Scholar
  3. 3.
    Flaccavento, G., et al.: Learning to count cells: applications to lens-free imaging of large fields. In: Microscopic Image Analysis with Applications in Biology (2011)Google Scholar
  4. 4.
    Greenbaum, A., et al.: Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy. Nat. Methods 9(9), 889–895 (2012)CrossRefGoogle Scholar
  5. 5.
    He, K., et al.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)Google Scholar
  6. 6.
    Jaqaman, K., et al.: Robust single-particle tracking in live-cell time-lapse sequences. Nat. Methods 5(8), 695–702 (2008)CrossRefGoogle Scholar
  7. 7.
    Jug, F., et al.: Moral lineage tracing. In: CVPR, pp. 5926–5935 (2016)Google Scholar
  8. 8.
    Kainz, P., Urschler, M., Schulter, S., Wohlhart, P., Lepetit, V.: You should use regression to detect cells. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 276–283. Springer, Cham (2015). doi: 10.1007/978-3-319-24574-4_33CrossRefGoogle Scholar
  9. 9.
    Kesavan, S.V., et al.: High-throughput monitoring of major cell functions by means of lensfree video microscopy. Sci. Rep. 4, 5942 (2014)CrossRefGoogle Scholar
  10. 10.
    Khan, A., Gould, S., Salzmann, M.: Deep convolutional neural networks for human embryonic cell counting. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9913, pp. 339–348. Springer, Cham (2016). doi: 10.1007/978-3-319-46604-0_25CrossRefGoogle Scholar
  11. 11.
    Magnusson, K.E.G., Jaldén, J.: A batch algorithm using iterative application of the viterbi algorithm to track cells and construct cell lineages. In: ISBI (2012)Google Scholar
  12. 12.
    Maška, M., et al.: A benchmark for comparison of cell tracking algorithms. Bioinformatics 30(11), 1609–1617 (2014)CrossRefGoogle Scholar
  13. 13.
    Mudanyali, O., et al.: Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications. Lab Chip 10(11), 1417–1428 (2010)CrossRefGoogle Scholar
  14. 14.
    Rempfler, M., et al.: Efficient algorithms for moral lineage tracing arXiv:1702.04111 (2017)
  15. 15.
    Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). doi: 10.1007/978-3-319-24574-4_28CrossRefGoogle Scholar
  16. 16.
    Xie, W., et al.: Microscopy cell counting with fully convolutional regression networks. In: MICCAI 1st WDLMIA (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Markus Rempfler
    • 1
    • 2
    Email author
  • Sanjeev Kumar
    • 2
  • Valentin Stierle
    • 3
  • Philipp Paulitschke
    • 3
  • Bjoern Andres
    • 4
  • Bjoern H. Menze
    • 1
    • 2
  1. 1.Institute for Advanced StudyTechnical University of MunichMunichGermany
  2. 2.Department of InformaticsTechnical University of MunichMunichGermany
  3. 3.Faculty of PhysicsLudwig-Maximilians University of MunichMunichGermany
  4. 4.Max Planck Institute for InformaticsSaarbrückenGermany

Personalised recommendations