Bayesian Image Quality Transfer with CNNs: Exploring Uncertainty in dMRI Super-Resolution

  • Ryutaro TannoEmail author
  • Daniel E. Worrall
  • Aurobrata Ghosh
  • Enrico Kaden
  • Stamatios N. Sotiropoulos
  • Antonio Criminisi
  • Daniel C. Alexander
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10433)


In this work, we investigate the value of uncertainty modelling in 3D super-resolution with convolutional neural networks (CNNs). Deep learning has shown success in a plethora of medical image transformation problems, such as super-resolution (SR) and image synthesis. However, the highly ill-posed nature of such problems results in inevitable ambiguity in the learning of networks. We propose to account for intrinsic uncertainty through a per-patch heteroscedastic noise model and for parameter uncertainty through approximate Bayesian inference in the form of variational dropout. We show that the combined benefits of both lead to the state-of-the-art performance SR of diffusion MR brain images in terms of errors compared to ground truth. We further show that the reduced error scores produce tangible benefits in downstream tractography. In addition, the probabilistic nature of the methods naturally confers a mechanism to quantify uncertainty over the super-resolved output. We demonstrate through experiments on both healthy and pathological brains the potential utility of such an uncertainty measure in the risk assessment of the super-resolved images for subsequent clinical use.



This work was supported by Microsoft scholarship. Data were provided in part by the HCP, WU-Minn Consortium (PIs: David Van Essen and Kamil Ugurbil) funded by NIH and Wash. U. The tumour data were acquired as part of a study lead by Alberto Bizzi, MD at his hospital in Milan, Italy.


  1. 1.
    Alexander, D.C., et al.: Image quality transfer and applications in diffusion MRI. NeuroImage 152, 283–298 (2017)CrossRefGoogle Scholar
  2. 2.
    Oktay, O., Bai, W., Lee, M., Guerrero, R., Kamnitsas, K., Caballero, J., Marvao, A., Cook, S., O’Regan, D., Rueckert, D.: Multi-input cardiac image super-resolution using convolutional neural networks. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 246–254. Springer, Cham (2016). doi: 10.1007/978-3-319-46726-9_29 CrossRefGoogle Scholar
  3. 3.
    Bahrami, K., Shi, F., Rekik, I., Shen, D.: Convolutional neural network for reconstruction of 7T-like images from 3T MRI using appearance and anatomical features. In: Carneiro, G., et al. (eds.) LABELS/DLMIA -2016. LNCS, vol. 10008, pp. 39–47. Springer, Cham (2016). doi: 10.1007/978-3-319-46976-8_5 Google Scholar
  4. 4.
    Tanno, R., Ghosh, A., Grussu, F., Kaden, E., Criminisi, A., Alexander, D.C.: Bayesian image quality transfer. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 265–273. Springer, Cham (2016). doi: 10.1007/978-3-319-46723-8_31 CrossRefGoogle Scholar
  5. 5.
    Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: CVPR, pp. 1874–1883 (2016)Google Scholar
  6. 6.
    Chorin, A.J., Hald, O.H.: Probability. In: Chorin, A., Hald, O.H. (eds.) Stochastic Tools in Mathematics and Science. STAMS, vol. 1, pp. 19–46. Springer, New York (2009). doi: 10.1007/978-1-4419-1002-8_2 CrossRefGoogle Scholar
  7. 7.
    Kingma, D.P., Salimans, T., Welling, M.: Variational dropout and the local reparameterization trick. In: NIPS, pp. 2575–2583 (2015)Google Scholar
  8. 8.
    Sotiropoulos, S.N., et al.: Advances in diffusion MRI acquisition and processing in the human connectome project. Neuroimage 80, 125–143 (2013)CrossRefGoogle Scholar
  9. 9.
    Özarslan, E., et al.: Mean apparent propagator (MAP) MRI: a novel diffusion imaging method for mapping tissue microstructure. NeuroImage 78, 16–32 (2013)CrossRefGoogle Scholar
  10. 10.
    Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE PAMI 38(2), 295–307 (2016)CrossRefGoogle Scholar
  11. 11.
    Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). doi: 10.1007/978-3-319-46475-6_43 CrossRefGoogle Scholar
  12. 12.
    Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR abs/1412.6980 (2014)Google Scholar
  13. 13.
    Tournier, J., Calamante, F., Connelly, A.: Improved probabilistic streamlines tractography by 2nd order integration over fiber orientation distributions. In: ISMRM, p. 1670 (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ryutaro Tanno
    • 1
    • 3
    Email author
  • Daniel E. Worrall
    • 1
  • Aurobrata Ghosh
    • 1
  • Enrico Kaden
    • 1
  • Stamatios N. Sotiropoulos
    • 2
  • Antonio Criminisi
    • 3
  • Daniel C. Alexander
    • 1
  1. 1.Department of Computer ScienceUniversity College LondonLondonUK
  2. 2.FMRIB CentreUniversity of OxfordOxfordUK
  3. 3.Microsoft Research CambridgeCambridgeUK

Personalised recommendations