Advertisement

Learning-Based Multi-atlas Segmentation of the Lungs and Lobes in Proton MR Images

  • Hoileong LeeEmail author
  • Tahreema Matin
  • Fergus Gleeson
  • Vicente Grau
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10433)

Abstract

Delineation of the lung and lobar anatomy in MR images is challenging due to the limited image contrast and the absence of visible interlobar fissures. Here we propose a novel automated lung and lobe segmentation method for pulmonary MR images. This segmentation method employs prior information of the lungs and lobes extracted from CT in the form of multiple MRI atlases, and adopts a learning-based atlas-encoding scheme, based on random forests, to improve the performance of multi-atlas segmentation. In particular, we encode each CT-derived MRI atlas by training an atlas-specific random forest for each structure of interest. In addition to appearance features, we also extract label context features from the registered atlases to introduce additional information to the non-linear mapping process. We evaluated our proposed framework on 10 clinical MR images acquired from COPD patients. It outperformed state-of-the-art approaches in segmenting the lungs and lobes, yielding a mean Dice score of 95.7%.

Keywords

Multi-atlas segmentation Lungs Pulmonary lobes MRI Machine learning Random forests 

Notes

Acknowledgments

HL is supported by a fellowship funded by the Ministry of Higher Education Malaysia and Universiti Malaysia Perlis. The research was partly supported by the CRUK and EPSRC Cancer Imaging Centre in Oxford.

References

  1. 1.
    Coupe, P., Manjon, J.V., Fonov, V., Pruessner, J., Robles, M., Collins, D.L.: Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation. NeuroImage 54(2), 940–954 (2011)CrossRefGoogle Scholar
  2. 2.
    Doel, T., Gavaghan, D.J., Grau, V.: Review of automatic pulmonary lobe segmentation methods from CT. Comput. Med. Imaging Grap. 40, 13–29 (2015)CrossRefGoogle Scholar
  3. 3.
    Giraud, R., Ta, V.T., Papadakis, N., Manjón, J.V., Collins, D.L., Coupé, P.: An optimized patchmatch for multi-scale and multi-feature label fusion. NeuroImage 124(Part A), 770–782 (2016)CrossRefGoogle Scholar
  4. 4.
    Guo, F., Svenningsen, S., Eddy, R.L., Capaldi, D.P.I., Sheikh, K., Fenster, A., Parraga, G.: Anatomical pulmonary magnetic resonance imaging segmentation for regional structure-function measurements of asthma. Med. Phys. 43(6), 2911–2926 (2016)CrossRefGoogle Scholar
  5. 5.
    Guo, F., Yuan, J., Rajchl, M., Svenningsen, S., PI Capaldi, D., Sheikh, K., Fenster, A., Parraga, G.: Globally optimal co-segmentation of three-dimensional pulmonary 1H and hyperpolarized 3He MRI with spatial consistence prior. Med. Image Anal. 23(1), 43–55 (2015)CrossRefGoogle Scholar
  6. 6.
    Kohlmann, P., Strehlow, J., Jobst, B., Krass, S., Kuhnigk, J.M., Anjorin, A., Sedlaczek, O., Ley, S., Kauczor, H.U., Wielpütz, M.O.: Automatic lung segmentation method for MRI-based lung perfusion studies of patients with chronic obstructive pulmonary disease. Int. J. Comput. Assist. Radiol. Surg. 10(4), 403–417 (2015)CrossRefGoogle Scholar
  7. 7.
    Lelieveldt, B.P.F., Van Der Geest, R.J., Ramze Rezaee, M., Bosch, J.G., Reiber, J.H.C.: Anatomical model matching with fuzzy implicit surfaces for segmentation of thoracic volume scans. IEEE Trans. Med. Imaging 18(3), 218–230 (1999)CrossRefGoogle Scholar
  8. 8.
    Osareh, A., Shadgar, B.: A segmentation method of lung cavities using region aided geometric snakes. J. Med. Syst. 34(4), 419–433 (2010)CrossRefGoogle Scholar
  9. 9.
    Rikxoort, E.M.V., Ginneken, B.V.: Automated segmentation of pulmonary structures in thoracic computed tomography scans: a review. Phys. Med. Biol. 58, R187–220 (2013)CrossRefGoogle Scholar
  10. 10.
    Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vision 57(2), 137–154 (2004)CrossRefGoogle Scholar
  11. 11.
    Wang, H., Cao, Y., Syeda-Mahmood, T.: Multi-atlas segmentation with learning-based label fusion. In: Wu, G., Zhang, D., Zhou, L. (eds.) MLMI 2014. LNCS, vol. 8679, pp. 256–263. Springer, Cham (2014). doi: 10.1007/978-3-319-10581-9_32 Google Scholar
  12. 12.
    Wang, H., Suh, J.W., Das, S.R., Pluta, J.B., Craige, C., Yushkevich, P.A.: Multi-atlas segmentation with joint label fusion. IEEE Trans. Pattern Anal. Mach. Intell. 35(3), 611–623 (2013)CrossRefGoogle Scholar
  13. 13.
    Warfield, S.K., Zou, K.H., Wells, W.M.: Simultaneous truth and performance level estimation (staple): an algorithm for the validation of image segmentation. IEEE Trans. Med. Imaging 23(7), 903–921 (2004)CrossRefGoogle Scholar
  14. 14.
    Zikic, D., Glocker, B., Criminisi, A.: Encoding atlases by randomized classification forests for efficient multi-atlas label propagation. Med. Image Anal. 18(8), 1262–1273 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Hoileong Lee
    • 1
    • 2
    Email author
  • Tahreema Matin
    • 3
  • Fergus Gleeson
    • 3
  • Vicente Grau
    • 1
  1. 1.Department of Engineering Science, Institute of Biomedical EngineeringUniversity of OxfordOxfordUK
  2. 2.School of Mechatronic EngineeringUniversiti Malaysia PerlisArauMalaysia
  3. 3.Department of RadiologyChurchill HospitalOxfordUK

Personalised recommendations