SD-Layer: Stain Deconvolutional Layer for CNNs in Medical Microscopic Imaging

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10435)


Convolutional Neural Networks (CNNs) are typically trained in the RGB color space. However, in medical imaging, we believe that pixel stain quantities offer a fundamental view of the interaction between tissues and stain chemicals. Since the optical density (OD) colorspace allows to compute pixel stain quantities from pixel RGB intensities using the Beer-Lambert’s law, we propose a stain deconvolutional layer, hereby named as SD-Layer, affixed at the front of CNN that performs two functions: (1) it transforms the input RGB microscopic images to Optical Density (OD) space and (2) this layer deconvolves OD image with the stain basis learned through backpropagation and provides tissue-specific stain absorption quantities as input to the following CNN layers. With the introduction of only nine additional learnable parameters in the proposed SD-Layer, we obtain a considerably improved performance on two standard CNN architectures: AlexNet and T-CNN. Using the T-CNN architecture prefixed with the proposed SD-Layer, we obtain 5-fold cross-validation accuracy of 93.2% in the problem of differentiating malignant immature White Blood Cells (WBCs) from normal immature WBCs for cancer detection.


Deep learning Classification Stain deconvolution Cancer imaging 


  1. 1.
    Andrearczyk, V., Whelan, P.F.: Using filter banks in convolutional neural networks for texture classification. Pattern Recogn. Lett. 84, 63–69 (2016)CrossRefGoogle Scholar
  2. 2.
    Bayramoglu, N., Kannala, J., Heikkilä, J.: Human epithelial type 2 cell classification with convolutional neural networks. In: 2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE), pp. 1–6. IEEE (2015)Google Scholar
  3. 3.
    Bayramoglu, N., Kannala, J., Heikkilä, J.: Deep learning for magnification independent breast cancer histopathology image classification. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 2440–2445. IEEE (2016)Google Scholar
  4. 4.
    Chen, H., Dou, Q., Wang, X., Qin, J., Heng, P.A.: Mitosis detection in breast cancer histology images via deep cascaded networks. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pp. 1160–1166. AAAI Press (2016)Google Scholar
  5. 5.
    Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Mitosis detection in breast cancer histology images with deep neural networks. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 411–418. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40763-5_51 CrossRefGoogle Scholar
  6. 6.
    Cruz-Roa, A.A., Arevalo Ovalle, J.E., Madabhushi, A., González Osorio, F.A.: A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 403–410. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40763-5_50 CrossRefGoogle Scholar
  7. 7.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)Google Scholar
  8. 8.
    Li, X., Plataniotis, K.N.: A complete color normalization approach to histopathology images using color cues computed from saturation-weighted statistics. IEEE Trans. Biomed. Eng. 62(7), 1862–1873 (2015)CrossRefGoogle Scholar
  9. 9.
    Macenko, M., Niethammer, M., Marron, J., Borland, D., Woosley, J.T., Guan, X., Schmitt, C., Thomas, N.E.: A method for normalizing histology slides for quantitative analysis. In: ISBI 2009, pp. 1107–1110. IEEE (2009)Google Scholar
  10. 10.
    Ruifrok, A.C., Johnston, D.A., et al.: Quantification of histochemical staining by color deconvolution. Anal. Quant. Cytol. Histol. 23(4), 291–299 (2001)Google Scholar
  11. 11.
    Singhal, V., Singh, P.: Local binary pattern for automatic detection of acute lymphoblastic leukemia. In: 2014 Twentieth National Conference on Communications (NCC), pp. 1–5. IEEE (2014)Google Scholar
  12. 12.
    Sirinukunwattana, K., Raza, S.E.A., Tsang, Y.W., Snead, D.R., Cree, I.A., Rajpoot, N.M.: Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans. Med. Imaging 35(5), 1196–1206 (2016)CrossRefGoogle Scholar
  13. 13.
    Wang, J., MacKenzie, J.D., Ramachandran, R., Chen, D.Z.: A deep learning approach for semantic segmentation in histology tissue images. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 176–184. Springer, Cham (2016). doi: 10.1007/978-3-319-46723-8_21 CrossRefGoogle Scholar
  14. 14.
    Xu, J., Xiang, L., Wang, G., Ganesan, S., Feldman, M., Shih, N.N., Gilmore, H., Madabhushi, A.: Sparse non-negative matrix factorization (SNMF) based color unmixing for breast histopathological image analysis. Comput. Med. Imaging Graph. 46, 20–29 (2015)CrossRefGoogle Scholar
  15. 15.
    Zhao, J., Zhang, M., Zhou, Z., Chu, J., Cao, F.: Automatic detection and classification of leukocytes using convolutional neural networks. Med. Biol. Eng. Comput., 1–15 (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.SBILab, Department of ECEIndraprastha Institute of Information Technology-Delhi (IIIT-D)DelhiIndia
  2. 2.Laboratory Oncology Unit, Dr. BRA.IRCHAIIMSDelhiIndia

Personalised recommendations