Parallel Closure Theorem for Left-Linear Nominal Rewriting Systems

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10483)


Nominal rewriting has been introduced as an extension of first-order term rewriting by a binding mechanism based on the nominal approach. In this paper, we extend Huet’s parallel closure theorem and its generalisation on confluence of left-linear term rewriting systems to the case of nominal rewriting. The proof of the theorem follows a previous inductive confluence proof for orthogonal uniform nominal rewriting systems, but the presence of critical pairs requires a much more delicate argument. The results include confluence of left-linear uniform nominal rewriting systems that are not \(\alpha \)-stable and thus are not represented by any systems in traditional higher-order rewriting frameworks.



We are grateful to the anonymous referees for valuable comments. This research was supported by JSPS KAKENHI Grant Numbers 15K00003 and 16K00091.


  1. 1.
    Aoto, T., Kikuchi, K.: Nominal confluence tool. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 173–182. Springer, Cham (2016). doi: 10.1007/978-3-319-40229-1_12 Google Scholar
  2. 2.
    Aoto, T., Kikuchi, K.: A rule-based procedure for equivariant nominal unification. In: Proceedings of the 8th HOR (2016)Google Scholar
  3. 3.
    Ayala-Rincón, M., Fernández, M., Gabbay, M.J., Rocha-Oliveira, A.C.: Checking overlaps of nominal rewriting rules. Electron. Notes Theoret. Comput. Sci. 323, 39–56 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)CrossRefzbMATHGoogle Scholar
  5. 5.
    de Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem. Indagationes Mathematicae 34, 381–392 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cheney, J.: Equivariant unification. J. Autom. Reasoning 45, 267–300 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Comon, H.: Completion of rewritie systems with membership constraints. Part I: deduction rules. J. Symbolic Comput. 25, 397–419 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Fernández, M., Gabbay, M.J.: Nominal rewriting. Inform. Comput. 205, 917–965 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable binding. Formal Aspects Comput. 13, 341–363 (2002)CrossRefzbMATHGoogle Scholar
  10. 10.
    Huet, G.: Confluent reductions: abstract properties and applications to term rewriting systems. J. ACM 27, 797–821 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Jounnaud, J.P., Kirchner, H.: Completion of a set of rules modulo a set of equations. SIAM J. Comput. 15, 1155–1194 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Klop, J.W., van Oostrom, V., van Raamsdonk, F.: Combinatory reduction systems: introduction and survey. Theoret. Comput. Sci. 121, 279–308 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Mayr, R., Nipkow, T.: Higher-order rewrite systems and their confluence. Theoret. Comput. Sci. 192, 3–29 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ohlebusch, E.: Church-Rosser theorems for abstract reduction modulo an equivalence relation. In: Nipkow, T. (ed.) RTA 1998. LNCS, vol. 1379, pp. 17–31. Springer, Heidelberg (1998). doi: 10.1007/BFb0052358 CrossRefGoogle Scholar
  15. 15.
    Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, New York (2002). doi: 10.1007/978-1-4757-3661-8 CrossRefzbMATHGoogle Scholar
  16. 16.
    van Oostrom, V.: Developing developments. Theoret. Comput. Sci. 175, 159–181 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Pitts, A.M.: Nominal logic, a first order theory of names and binding. Inform. Comput. 186, 165–193 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Pollack, R., Sato, M., Ricciotti, W.: A canonical locally named representation of binding. J. Autom. Reasoning 49, 185–207 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Suzuki, T., Kikuchi, K., Aoto, T., Toyama, Y.: Confluence of orthogonal nominal rewriting systems revisited. In: Proceedings of the 26th RTA, vol. 36. LIPIcs, pp. 301–317 (2015)Google Scholar
  20. 20.
    Suzuki, T., Kikuchi, K., Aoto, T., Toyama, Y.: Critical pair analysis in nominal rewriting. In: Proceedings of the 7th SCSS, vol. 39. EPiC, pp. 156–168. EasyChair (2016)Google Scholar
  21. 21.
    Toyama, Y.: Commutativity of term rewriting systems. In: Fuchi, K., Kott, L. (eds.) Programming of Future Generation Computers II, North-Holland, pp. 393–407 (1988)Google Scholar
  22. 22.
    Urban, C., Pitts, A.M., Gabbay, M.J.: Nominal unification. Theoret. Comput. Sci. 323, 473–497 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Vestergaard, R., Brotherston, J.: A formalised first-order confluence proof for the \(\lambda \)-calculus using one-sorted variable names. Inform. Comput. 183, 212–244 (2003)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.RIECTohoku UniversitySendaiJapan
  2. 2.Faculty of EngineeringNiigata UniversityNiigataJapan

Personalised recommendations