Skip to main content

Pushing the Boundaries of Reasoning About Qualified Cardinality Restrictions

  • Conference paper
  • First Online:
  • 455 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10483))

Abstract

We present a novel hybrid architecture for reasoning about description logics supporting role hierarchies and qualified cardinality restrictions (QCRs). Our reasoning architecture is based on saturation rules and integrates integer linear programming. Deciding the numerical satisfiability of a set of QCRs is reduced to solving a corresponding system of linear inequalities. If such a system is infeasible then the QCRs are unsatisfiable. Otherwise the numerical restrictions of the QCRs are satisfied but unknown entailments between qualifications can still lead to unsatisfiability. Our integer linear programming (ILP) approach is highly scalable due to integrating learned knowledge about concept subsumption and disjointness into a column generation model and a decomposition algorithm to solve it. Our experiments indicate that this hybrid architecture offers a better scalability for reasoning about QCRs than approaches combining both tableaux and ILP or applying traditional (hyper)tableau methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Also known as graded modalities in modal logics.

  2. 2.

    The value of variables not listed in a solution are equal to zero.

References

  1. Baader, F., Brandt, S., Lutz, C.: Pushing the \(\cal{EL}\) envelope. In: Proceeding of IJCAI, pp. 364–369 (2005)

    Google Scholar 

  2. Baader, F., Sattler, U.: An overview of tableau algorithms for description logics. Stud. Logica. 69(1), 5–40 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barnhart, C., Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W.P., Vance, P.H.: Branch-and-price: column generation for solving huge integer programs. Oper. Res. 46(3), 316–329 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bate, A., Motik, B., Cuenca Grau, B., Simančík, F., Horrocks, I.: Extending consequence-based reasoning to \(\cal{SRIQ}\). In: Proceeding of KR, pp. 187–196 (2016)

    Google Scholar 

  5. Canadian Parliament: https://en.wikipedia.org/wiki/House_of_Commons_of_Canada

  6. Chvatal, V.: Linear Programming. Freeman, New York (1983)

    MATH  Google Scholar 

  7. Dantzig, G.B., Wolfe, P.: Decomposition principle for linear programs. Oper. Res. 8(1), 101–111 (1960)

    Article  MATH  Google Scholar 

  8. FaCT++: http://owl.cs.manchester.ac.uk/tools/fact/

  9. Faddoul, J., Haarslev, V.: Algebraic tableau reasoning for the description logic \(\cal{SHOQ}\). J. Appl. Logic 8(4), 334–355 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Faddoul, J., Haarslev, V.: Optimizing algebraic tableau reasoning for \(\cal{SHOQ}\): First experimental results. In: Proceeding of DL, pp. 161–172 (2010)

    Google Scholar 

  11. Farsiniamarj, N., Haarslev, V.: Practical reasoning with qualified number restrictions: a hybrid Abox calculus for the description logic \(\cal{SHQ}\). AI Commun. 23(2–3), 334–355 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Freund, R., Mizuno, S.: Interior point methods: current status and future directions. Optima 51, 1–9 (1996)

    MATH  Google Scholar 

  13. Gilmore, P.C., Gomory, R.E.: A linear programming approach to the cutting-stock problem. Oper. Res. 9(6), 849–859 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  14. Haarslev, V., Hidde, K., Möller, R., Wessel, M.: The RacerPro knowledge representation and reasoning system. Semant. Web 3(3), 267–277 (2012)

    Google Scholar 

  15. Haarslev, V., Möller, R.: RACER system description. In: Goré, R., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS, vol. 2083, pp. 701–705. Springer, Heidelberg (2001). doi:10.1007/3-540-45744-5_59

    Chapter  Google Scholar 

  16. Haarslev, V., Sebastiani, R., Vescovi, M.: Automated reasoning in \(\cal{ALCQ}\) via SMT. In: Proceeding of CADE, pp. 283–298 (2011)

    Google Scholar 

  17. Hansen, P., Jaumard, B., de Aragão, M.P., Chauny, F., Perron, S.: Probabilistic satisfiability with imprecise probability. Int. J. Approximate Reasoning 24(2–3), 171–189 (2000)

    Article  MATH  Google Scholar 

  18. HermiT: http://www.hermit-reasoner.com/download.html

  19. Hollunder, B., Baader, F.: Qualifying number restrictions in concept languages. In: Proceeding of KR, pp. 335–346 (1991)

    Google Scholar 

  20. Jaumard, B., Hansen, P., de Aragão, M.P.: Column generation methods for probabilistic logic. ORSA J. Comput. 3(2), 135–148 (1991)

    Article  MATH  Google Scholar 

  21. Klinov, P., Parsia, B.: Pronto: a practical probabilistic description logic reasoner. In: Bobillo, F., Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) UniDL/URSW 2008-2010. LNCS, vol. 7123, pp. 59–79. Springer, Heidelberg (2013). doi:10.1007/978-3-642-35975-0_4

    Chapter  Google Scholar 

  22. Konclude: http://www.derivo.de/en/produkte/konclude/

  23. Lübbecke, M., Desrosiers, J.: Selected topics in column generation. Oper. Res. 53, 1007–1023 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Megiddo, N.: On the complexity of linear programming. In: Advances in Economic Theory, pp. 225–268. Cambridge University Press (1987)

    Google Scholar 

  25. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, New York (1988)

    Book  MATH  Google Scholar 

  26. Ohlbach, H., Köhler, J.: Modal logics, description logics and arithmetic reasoning. Artif. Intell. 109(1–2), 1–31 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Racer: https://www.ifis.uni-luebeck.de/index.php?id=385

  28. Roosta Pour, L., Haarslev, V.: Algebraic reasoning for \(\cal{SHIQ}\). In: Proceeding of DL, pp. 530–540 (2012)

    Google Scholar 

  29. Samwald, M.: Genomic CDS: an example of a complex ontology for pharmacogenetics and clinical decision support. In: 2nd OWL Reasoner Evaluation Workshop, pp. 128–133 (2013)

    Google Scholar 

  30. Simančík, F., Motik, B., Horrocks, I.: Consequence-based and fixed-parameter tractable reasoning in description logics. Artif. Intell. 209, 29–77 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Vanderbeck, F.: Branching in branch-and-price: a generic scheme. Math. Program. 130(2), 249–294 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Vlasenko, J., Daryalal, M., Haarslev, V., Jaumard, B.: A saturation-based algebraic reasoner for \(\cal{ELQ}\). In: PAAR@IJCAR, Coimbra, Portugal, pp. 110–124 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Haarslev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Vlasenko, J., Haarslev, V., Jaumard, B. (2017). Pushing the Boundaries of Reasoning About Qualified Cardinality Restrictions. In: Dixon, C., Finger, M. (eds) Frontiers of Combining Systems. FroCoS 2017. Lecture Notes in Computer Science(), vol 10483. Springer, Cham. https://doi.org/10.1007/978-3-319-66167-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66167-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66166-7

  • Online ISBN: 978-3-319-66167-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics