Metric Temporal Description Logics with Interval-Rigid Names

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10483)


In contrast to qualitative linear temporal logics, which can be used to state that some property will eventually be satisfied, metric temporal logics allow to formulate constraints on how long it may take until the property is satisfied. While most of the work on combining Description Logics (DLs) with temporal logics has concentrated on qualitative temporal logics, there has recently been a growing interest in extending this work to the quantitative case. In this paper, we complement existing results on the combination of DLs with metric temporal logics over the natural numbers by introducing interval-rigid names. This allows to state that elements in the extension of certain names stay in this extension for at least some specified amount of time.


  1. 1.
    Alur, R., Henzinger, T.A.: Real-time logics: complexity and expressiveness. Inf. Comput. 104(1), 35–77 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alur, R., Henzinger, T.A.: A really temporal logic. J. ACM 41(1), 181–204 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Artale, A., Bresolin, D., Montanari, A., Sciavicco, G., Ryzhikov, V.: DL-lite and interval temporal logics: a marriage proposal. In: Proceedings of the 21st European Conference on Artificial Intelligence (ECAI 2014), pp. 957–958. IOS Press (2014)Google Scholar
  4. 4.
    Artale, A., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: Tractable interval temporal propositional and description logics. In: Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI 2015), pp. 1417–1423. AAAI Press (2015)Google Scholar
  5. 5.
    Artale, A., Kontchakov, R., Lutz, C., Wolter, F., Zakharyaschev, M.: Temporalising tractable description logics. In: Proceedings of the 14th International Symposium on Temporal Representation and Reasoning (TIME 2007), pp. 11–22. IEEE Press (2007)Google Scholar
  6. 6.
    Artale, A., Lutz, C., Toman, D.: A description logic of change. In: Proceedings of the 20th International Joint Conference Artificial Intelligence (IJCAI 2007), pp. 218–223 (2007)Google Scholar
  7. 7.
    Baader, F., Borgwardt, S., Koopmann, P., Ozaki, A., Thost, V.: Metric temporal description logics with interval-rigid names (extended version). LTCS-Report 17-03 (2017).
  8. 8.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications, 2nd edn. Cambridge University Press, Cambridge (2007)zbMATHGoogle Scholar
  9. 9.
    Baader, F., Ghilardi, S., Lutz, C.: LTL over description logic axioms. ACM Trans. Comput. Log. 13(3), 21:1–21:32 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Borgwardt, S., Thost, V.: Temporal query answering in the description logic \(\cal{EL}\). In: Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI 2015), pp. 2819–2825. AAAI Press (2015)Google Scholar
  11. 11.
    Brandt, S., Kalaycı, E.G., Kontchakov, R., Ryzhikov, V., Xiao, G., Zakharyaschev, M.: Ontology-based data access with a horn fragment of metric temporal logic. In: Proceedings of the 31st AAAI Conference on Artificial Intelligence (AAAI 2017), pp. 1070–1076. AAAI Press (2017)Google Scholar
  12. 12.
    Crowe, C.L., Tao, C.: Designing ontology-based patterns for the representation of the time-relevant eligibility criteria of clinical protocols. In: AMIA Summits on Translational Science Proceedings 2015, pp. 173–177 (2015)Google Scholar
  13. 13.
    Gutiérrez-Basulto, V., Jung, J.C., Ozaki, A.: On metric temporal description logics. In: Proceedings of the 22nd European Conference on Artificial Intelligence (ECAI 2016), pp. 837–845. IOS Press (2016)Google Scholar
  14. 14.
    Harel, D.: Effective transformations on infinite trees, with applications to high undecidability, dominoes, and fairness. J. ACM 33(1), 224–248 (1986)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kurucz, A., Wolter, F., Zakharyaschev, M., Gabbay, D.M.: Many-dimensional modal logics: theory and applications. Gulf Professional Publishing (2003)Google Scholar
  16. 16.
    Lutz, C., Walther, D., Wolter, F.: Quantitative temporal logics over the reals: PSPACE and below. Inf. Comput. 205(1), 99–123 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Lutz, C., Wolter, F., Zakharyaschev, M.: Temporal description logics: a survey. In: Proceedings of the 15th Symposium on Temporal Representation and Reasoning (TIME 2008), pp. 3–14. IEEE Press (2008)Google Scholar
  18. 18.
    Schild, K.: A correspondence theory for terminological logics: preliminary report. In: Proceedings of the 12th International Joint Conference on Artificial Intelligence (IJCAI 1991), pp. 466–471. Morgan Kaufmann (1991)Google Scholar
  19. 19.
    Schulz, S., Markó, K., Suntisrivaraporn, B.: Formal representation of complex SNOMED CT expressions. BMC Med. Inform. Decis. Mak. 8(Suppl 1), S9 (2008)CrossRefGoogle Scholar
  20. 20.
    Wolter, F., Zakharyaschev, M.: Temporalizing description logics. In: Frontiers of Combining Systems, vol. 2, pp. 379–402. Research Studies Press/Wiley (2000)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Theoretical Computer Science and cfaedTU DresdenDresdenGermany

Personalised recommendations