Abstract
This paper develops a general methodology to connect propositional and first-order interpolation. In fact, the existence of suitable skolemizations and of Herbrand expansions together with a propositional interpolant suffice to construct a first-order interpolant. This methodology is realized for lattice-based finitely-valued logics, the top element representing true and for (fragments of) infinitely-valued first-order Gödel logic, the logic of all linearly ordered constant domain Kripke frames.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aguilera, J.P., Baaz, M.: Ten problems in Gödel logic. Soft. Comput. 21(1), 149–152 (2017)
Baaz, M., Ciabattoni, A., Fermüller, C.G.: Hypersequent calculi for Gödel logics - a survey. J. Logic Comput. 13(6), 835–861 (2003)
Baaz, M., Iemhoff, R.: The Skolemization of existential quantifiers in intuitionistic logic. Ann. Pure Appl. Logic 142(1–3), 269–295 (2006)
Baaz, M., Leitsch, A.: Methods of Cut-Elimination, vol. 34. Springer Science & Business Media, Heidelberg (2011)
Baaz, M., Preining, N., Zach, R.: First-order Gödel logics. Ann. Pure Appl. Logic 147(1), 23–47 (2007)
Baaz, M., Veith, H.: Interpolation in fuzzy logic. Arch. Math. Log. 38(7), 461–489 (1999)
Birkhoff, G.: Lattice Theory, vol. 25. American Mathematical Society, New York (1948)
Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory. J. Symbolic Logic 22(03), 269–285 (1957)
Fine, K.: Failures of the interpolation lemma in quantified modal logic. J. Symbolic Logic 44(02), 201–206 (1979)
Gödel, K.: Die Vollständigkeit der Axiome des logischen Funktionenkalküls. Monatshefte für Mathematik 37(1), 349–360 (1930)
Hilbert, D., Bernays, P.: Grundlagen der Mathematik (1968)
Maksimova, L.: Intuitionistic logic and implicit definability. Ann. Pure Appl. Logic 105(1–3), 83–102 (2000)
Maksimova, L.L.: Craig’s theorem in superintuitionistic logics and amalgamable varieties of pseudo-Boolean algebras. Algebra Logic 16(6), 427–455 (1977)
Maksimova, L.L.: Interpolation properties of superintuitionistic logics. Stud. Logica. 38(4), 419–428 (1979)
Miller, D.A.: A compact representation of proofs. Stud. Logica. 46(4), 347–370 (1987)
Miyama, T.: The interpolation theorem and Beth’s theorem in many-valued logics. Mathematica Japonica 19, 341–355 (1974)
Ono, H.: Model extension theorem and Craig’s interpolation theorem for intermediate predicate logics. Rep. Math. Logic 15, 41–58 (1983)
Vizel, Y., Weissenbacher, G., Malik, S.: Boolean satisfiability solvers and their applications in model checking. Proc. IEEE 103(11), 2021–2035 (2015)
Acknowledgments
Partially supported by FWF P 26976, FWF I 2671 and the Czech-Austrian project MOBILITY No. 7AMB17AT054.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Baaz, M., Lolic, A. (2017). First-Order Interpolation of Non-classical Logics Derived from Propositional Interpolation. In: Dixon, C., Finger, M. (eds) Frontiers of Combining Systems. FroCoS 2017. Lecture Notes in Computer Science(), vol 10483. Springer, Cham. https://doi.org/10.1007/978-3-319-66167-4_15
Download citation
DOI: https://doi.org/10.1007/978-3-319-66167-4_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-66166-7
Online ISBN: 978-3-319-66167-4
eBook Packages: Computer ScienceComputer Science (R0)