Skip to main content

First-Order Interpolation of Non-classical Logics Derived from Propositional Interpolation

  • Conference paper
  • First Online:
Frontiers of Combining Systems (FroCoS 2017)

Abstract

This paper develops a general methodology to connect propositional and first-order interpolation. In fact, the existence of suitable skolemizations and of Herbrand expansions together with a propositional interpolant suffice to construct a first-order interpolant. This methodology is realized for lattice-based finitely-valued logics, the top element representing true and for (fragments of) infinitely-valued first-order Gödel logic, the logic of all linearly ordered constant domain Kripke frames.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aguilera, J.P., Baaz, M.: Ten problems in Gödel logic. Soft. Comput. 21(1), 149–152 (2017)

    Google Scholar 

  2. Baaz, M., Ciabattoni, A., Fermüller, C.G.: Hypersequent calculi for Gödel logics - a survey. J. Logic Comput. 13(6), 835–861 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baaz, M., Iemhoff, R.: The Skolemization of existential quantifiers in intuitionistic logic. Ann. Pure Appl. Logic 142(1–3), 269–295 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baaz, M., Leitsch, A.: Methods of Cut-Elimination, vol. 34. Springer Science & Business Media, Heidelberg (2011)

    MATH  Google Scholar 

  5. Baaz, M., Preining, N., Zach, R.: First-order Gödel logics. Ann. Pure Appl. Logic 147(1), 23–47 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baaz, M., Veith, H.: Interpolation in fuzzy logic. Arch. Math. Log. 38(7), 461–489 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Birkhoff, G.: Lattice Theory, vol. 25. American Mathematical Society, New York (1948)

    MATH  Google Scholar 

  8. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory. J. Symbolic Logic 22(03), 269–285 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fine, K.: Failures of the interpolation lemma in quantified modal logic. J. Symbolic Logic 44(02), 201–206 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gödel, K.: Die Vollständigkeit der Axiome des logischen Funktionenkalküls. Monatshefte für Mathematik 37(1), 349–360 (1930)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hilbert, D., Bernays, P.: Grundlagen der Mathematik (1968)

    Google Scholar 

  12. Maksimova, L.: Intuitionistic logic and implicit definability. Ann. Pure Appl. Logic 105(1–3), 83–102 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Maksimova, L.L.: Craig’s theorem in superintuitionistic logics and amalgamable varieties of pseudo-Boolean algebras. Algebra Logic 16(6), 427–455 (1977)

    Article  MATH  Google Scholar 

  14. Maksimova, L.L.: Interpolation properties of superintuitionistic logics. Stud. Logica. 38(4), 419–428 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  15. Miller, D.A.: A compact representation of proofs. Stud. Logica. 46(4), 347–370 (1987)

    Google Scholar 

  16. Miyama, T.: The interpolation theorem and Beth’s theorem in many-valued logics. Mathematica Japonica 19, 341–355 (1974)

    MathSciNet  MATH  Google Scholar 

  17. Ono, H.: Model extension theorem and Craig’s interpolation theorem for intermediate predicate logics. Rep. Math. Logic 15, 41–58 (1983)

    MathSciNet  MATH  Google Scholar 

  18. Vizel, Y., Weissenbacher, G., Malik, S.: Boolean satisfiability solvers and their applications in model checking. Proc. IEEE 103(11), 2021–2035 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

Partially supported by FWF P 26976, FWF I 2671 and the Czech-Austrian project MOBILITY No. 7AMB17AT054.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matthias Baaz or Anela Lolic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Baaz, M., Lolic, A. (2017). First-Order Interpolation of Non-classical Logics Derived from Propositional Interpolation. In: Dixon, C., Finger, M. (eds) Frontiers of Combining Systems. FroCoS 2017. Lecture Notes in Computer Science(), vol 10483. Springer, Cham. https://doi.org/10.1007/978-3-319-66167-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66167-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66166-7

  • Online ISBN: 978-3-319-66167-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics