Skip to main content

Vasiliev’s Clue to Mourdoukhay-Boltovskoy’s Hypersyllogistic

  • Chapter
  • First Online:
  • 197 Accesses

Part of the book series: Synthese Library ((SYLI,volume 387))

Abstract

In 1926 D.Mourdoukhay-Boltovskoy introduced a hypersillogistic which according to him relates to the traditional syllogistic as a four-dimensional space relates to the three-dimensional space. Unfortunately, his note was too brief to understand the conception introduced. His remark from 1929 in which he refers to N. Vasiliev’s metalogic furnishes the clue to hypersyllogistic. In the paper the semantic of model schemes for hypersillogistic is proposed and some possible translations into traditional syllogistic are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Kostyuk, T. I. (2000). N.A. Vasiliev’s N-dimensional logic: Modern reconstruction. In Logical Investigations (Vol. 7, pp. 261–268). Moscow: Nauka (in Russian).

    Google Scholar 

  • Mourdoukhay-Boltovskoy, D. D. (1998). Philosophy. Psychology. Mathematics. Moscow (in Russian).

    Google Scholar 

  • Mourdoukhay-Boltovskoy, D. (1919–1926). Sur les Syllogismes en logique et les Hypersyllogismes en Metalogique. In Proceedings of Naturalist Society of NKSU, Rostov-on-Don (Vol.3, pp. 34–35).

    Google Scholar 

  • Vasiliev, N. A. (1989). Imaginary logic. Selected works. Moscow (in Russian).

    Google Scholar 

  • Vasyukov, V. L. (2005). A reconstruction of hypersyllogistic semantics philosophy and the future of civilization (Abstracts of lectures and talks of IV Russian philosophical congress, pp. 544–545). Moscow (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir L. Vasyukov .

Editor information

Editors and Affiliations

Appendix

Appendix

Sur les Syllogismes en logique et les Hypersyllogismes en Métalogique

par D. Mourdoukhay-Boltovskoy

La note tache de construire la Métalogique qui se trouve dans le même rapport à la logique classique, comme l’espace à 4 dimensions à l’espace ordinaire. Les lois de la logique formelle des propositions sont conservés et les lois de la logique des classes remplacés par des lois plus générales. La hyperproposition c’est la relation non de deux, mais de trois termes

|a ′′ b c|

l’espèce, le genre et le hypergenre.

Pour une hyperclasse on doit avoir non une seule hyperclasse réciproque (contraire), mais deux \(( \underline {a})\), \((\overline {a})\) et pas deux opérations: l’inclusion et l’exclusion, mais trois:

\((\overline { \underline {a}})=a\), \((\overline {\overline {a}})=( \underline {a})\)

On doit admettre aussi les hyperpropositions générales négatives:

\(|a~ \underline {b}~\overline {c}|\)

\(|a^{\prime \prime }~b^{\prime }~c|=|a~( \underline {\overline {b}})~(\overline { \underline {c}})|\)

\(\qquad \qquad \qquad |a~ \underline {b}~\overline {c}|=|a^{\prime \prime }~(\overline {b})^{\prime }~( \underline {c})|\) (obversio)

La hyperproposition particulière affirmative est à 6 termes:

\(|\underset {\cdot }{ea}~\overset {\cdot }{fb}~gc|\)

et se ramène à l’affirmation de l’existence d’une hyperclasse x telle que

 | x ′′ e a x ′′ f b x ′′ g c |

En vertu de la conversation des lois de la logique des propositions

\(|\underset {\cdot }{ea}~\overset {\cdot }{fb}~gc|=|\underset {\cdot }{fb}~\overset {\cdot }{ea}~gc|=\ldots \)(conversio).

La hyperproposition négatives c’est:

\(|\underset {\cdot }{ea}~\overset {\cdot }{fb}~\overline {gc}|=\begin {vmatrix} x^{\prime \prime } & e^{\prime } & a \\ x^{\prime \prime } & f^{\prime } & b \\ x^{\prime \prime } & \overline {g^{\prime }} & \underline {c}\end {vmatrix}\)

\(|\underset {\cdot }{ea}~ \underline {\overset {\cdot }{fb}}~\overline {gc}|=\begin {vmatrix} x^{\prime \prime } & e^{\prime } & \underline {a} \\ x^{\prime \prime } & \underline {f^{\prime }} & \overline {b} \\ x^{\prime \prime } & \overline {g^{\prime }} & \underline {c}\end {vmatrix}\)

On demontre que

\(|\underset {\cdot }{ea}~\overset {\cdot }{fb}~\overline {gc}|=|\underset {\cdot }{fb}~\overset {\cdot }{ae}~\overline {gc}|\)

\(|\underset {\cdot }{ea}~\overset {\cdot }{ \underline {fb}}~\overline {gc}|=|\underset {\cdot }{ea}~\overset {\cdot }{\overline {gc}}~ \underline {fb}|\)

Les lois fondamentales de la métalogique de l’identité

|a ′′ a a|

de la contradiction on postule l’impossibilité de

\(|a^{\prime \prime }~( \underline {a})^{\prime }~(\overline {a})|\) ou en général \(\begin {vmatrix} a^{\prime \prime } & b^{\prime } & c \\ x^{\prime \prime } & (\overline {b})^{\prime } & ( \underline {c}) \\ x^{\prime \prime } & ( \underline {b})^{\prime } & (\overline {c})\end {vmatrix}\)

du quatrième exclu On affirme l’existence

|a ′′ b c| ou \(|a^{\prime \prime }~( \underline {b})^{\prime }~(\overline {c})|\) ou \(|a^{\prime \prime }~(\overline {b})^{\prime }~( \underline {c})|\)

Il faut ajouter encore

\(|a~ \underline {b}~\overline {c}|=|b~ \underline {c}~\overline {a}|=|c~ \underline {a}~\overline {b}|\)

La hyperconclusion suppose 3 hyperpremisses. L’operation syllogistique s’exprime par la formule

 | e ′′ g c f ′′ b d a ′′ f e | = |a ′′ b c| (∗)

La dégéneration de la Métalogique en logique s’obtient quand \(\overline {b}=\) b

|a ′′ b c| = |a b| \(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |a~ \underline {b}~\overline {c}|=|a~ \underline {b}~\overline {b}|=|a~~ \underline {b}|\)

La partie de la Métalogique correspondante à la logique classique s’occupe des modes des hypersyllogismes en les distribuant dans les types selon les conclusions.

Nous avons un seul hypersyllogisme avec la conclusion gén-aff. (*) qui dégénére en Barbara.

Du hypers. avec conclusion gén-neg qui dégénére en Celarent:

\(\begin {vmatrix} f & \underline {g} & \overline {c} \\ e & \overline {b} & \underline {h} \\ a^{\prime \prime } & e^{\prime } & f\end {vmatrix}=\begin {vmatrix} f^{\prime } & (\overline {g})^{\prime } & ( \underline {c}) \\ e^{\prime \prime } & (\overline {b})^{\prime } & ( \underline {h}) \\ a^{\prime \prime } & e^{\prime } & f\end {vmatrix}=|a~(\overline {b})^{\prime }~( \underline {c})|=|a~ \underline {\overline {b}}~ \underline {c}|\)

on obtient d’autres modes avec la conclusion du mème type au moyen de conversio. Avec la hyperconclusion part-aff.

\(\begin {vmatrix} a^{\prime \prime } & l^{\prime } & k \\ a^{\prime \prime } & h^{\prime } & m \\ \underset {\cdot }{ae} & \overset {\cdot }{fb} & gc\end {vmatrix}=\begin {vmatrix} a^{\prime \prime } & l^{\prime } & k \\ e^{\prime \prime } & h^{\prime } & m \\ p^{\prime \prime } & e^{\prime } & a \\ p^{\prime \prime } & f^{\prime } & b \\ p^{\prime \prime } & g^{\prime } & c\end {vmatrix}=\begin {vmatrix} p^{\prime \prime } & h^{\prime } & k \\ p^{\prime \prime } & f^{\prime } & b \\ p^{\prime \prime } & g^{\prime } & c\end {vmatrix}=|\underset {\cdot }{gc}~\overset {\cdot }{fb}~hk|\)

Avec la hypercon. part-négat. (Ferio)

\(\begin {vmatrix} a & \underline {l} & \overline {k} \\ e & \underline {h} & \overline {m} \\ \underset {\cdot }{ae} & \overset {\cdot }{fb} & gc\end {vmatrix}=|\underset {\cdot }{fb}~\overset {\cdot }{gc}~\overline {hk}|\)

(Bokardo)

\(\begin {vmatrix} a^{\prime \prime } & l^{\prime } & k \\ e^{\prime \prime } & h^{\prime } & m \\ \underset {\cdot }{ae} & \overset {\cdot }{fb} & \overline {gc}\end {vmatrix}=|\underset {\cdot }{hk}~\overset {\cdot }{fb}~\overline {gc}|\)

qui se ramène à Ferio au moyen des opérations

\(\begin {vmatrix} a^{\prime \prime } & l^{\prime } & k \\ e^{\prime \prime } & h^{\prime } & m \\ \underset {\cdot }{ae} & \overset {\cdot }{fb} & \overline {gc}\end {vmatrix}=\begin {vmatrix} a & \underline {\overline {(l)}} & \overline { \underline {(k)}} \\ e & ( \underline {h}) & (\overline {m)} \\ \underset {\cdot }{ea} & \overset {\cdot }{fb} & (\overline {g}~\overline {c})\end {vmatrix}=\) \(|\underset {\cdot }{fb}~\overset {\cdot }{( \underline {g}~\overline {c})}~ \underline {(\overline {h}~\overline {k})}|\) etc.

On définit 180 modes, mais il est dificile à prouver que les modes obtenus sont le seuls possibles.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vasyukov, V.L. (2017). Vasiliev’s Clue to Mourdoukhay-Boltovskoy’s Hypersyllogistic. In: Markin, V., Zaitsev, D. (eds) The Logical Legacy of Nikolai Vasiliev and Modern Logic. Synthese Library, vol 387. Springer, Cham. https://doi.org/10.1007/978-3-319-66162-9_14

Download citation

Publish with us

Policies and ethics