Conjunctions of Among Constraints

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10416)

Abstract

Many existing global constraints can be encoded as a conjunction of among constraints. An among constraint holds if the number of the variables in its scope whose value belongs to a prespecified set, which we call its range, is within some given bounds. It is known that domain filtering algorithms can benefit from reasoning about the interaction of among constraints so that values can be filtered out taking into consideration several among constraints simultaneously. The present paper embarks into a systematic investigation on the circumstances under which it is possible to obtain efficient and complete domain filtering algorithms for conjunctions of among constraints. We start by observing that restrictions on both the scope and the range of the among constraints are necessary to obtain meaningful results. Then, we derive a domain flow-based filtering algorithm and present several applications. In particular, it is shown that the algorithm unifies and generalizes several previous existing results.

References

  1. 1.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows - Theory. Algorithms and Applications. Prentice Hall, Upper Saddle River (1993)MATHGoogle Scholar
  2. 2.
    Appa, G., Magos, D., Mourtos, I.: LP relaxations of multiple all_different predicates. In: Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 364–369. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24664-0_25 CrossRefGoogle Scholar
  3. 3.
    Appa, G., Magos, D., Mourtos, I.: On the system of two all_different predicates. Inf. Process. Lett. 94(3), 99–105 (2005)CrossRefMATHGoogle Scholar
  4. 4.
    Bacchus, F., Walsh, T.: Propagating logical combinations of constraints. In: Proceedings of IJCAI 2005, pp. 35–40 (2005)Google Scholar
  5. 5.
    Beldiceanu, N., Contejean, E.: Introducing global constraints in chip. Math. Comput. Modell. 12, 97–123 (1994)CrossRefMATHGoogle Scholar
  6. 6.
    Bessiere, C., Hebrard, E., Hnich, B., Kiziltan, Z., Toby Walsh, S.: A useful special case of the CARDPATH constraint. In: Proceedings of ECAI 2008, pp. 475–479 (2008)Google Scholar
  7. 7.
    Bessiere, C., Hebrard, E., Hnich, B., Kiziltan, Z., Walsh, T.: Range and roots: two common patterns for specifying and propagating counting and occurrence constraints. Artif. Intell. 173(11), 1054–1078 (2009)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Bessiere, C., Katsirelos, G., Narodytska, N., Quimper, C.-G., Walsh, T.: Propagating conjunctions of alldifferent constraints. In: Proceedings of AAAI 2010 (2010)Google Scholar
  9. 9.
    Chabert, G., Demassey, S.: The conjunction of interval among constraints. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 113–128. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29828-8_8 CrossRefGoogle Scholar
  10. 10.
    Dalmau, V.: Conjunctions of among constraints. Technical report, eprint arXiv:1706.05059 (2017)
  11. 11.
    Färnqvist, T., Jonsson, P.: Bounded tree-width and CSP-related problems. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 632–643. Springer, Heidelberg (2007). doi:10.1007/978-3-540-77120-3_55 CrossRefGoogle Scholar
  12. 12.
    Fellows, M.R., Friedrich, T., Hermelin, D., Narodytska, N., Rosamond, F.A.: Constraint satisfaction problems: convexity makes alldifferent constraints tractable. Theor. Comput. Sci. 472, 81–89 (2013)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Goldberg, A.V., Rao, S.: Beyond the flow decomposition barrier. J. ACM 45(5), 783–797 (1998)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Gottlob, G., Leone, N., Scarcello, F.: A comparison of structural CSP decomposition methods. Artif. Intell. 124(2), 243–282 (2000)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Hopcroft, J.E., Karp, R.M.: An n\({}^{5/2}\) algorithm for maximum matchings in bipartite graphs. SIAM J. Comput. 2(4), 225–231 (1973)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Kocjan, W., Kreuger, P.: Filtering methods for symmetric cardinality constraint. In: Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 200–208. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24664-0_14 CrossRefGoogle Scholar
  17. 17.
    Kutz, M., Elbassioni, K.M., Katriel, I., Mahajan, M.: Simultaneous matchings: hardness and approximation. J. Comput. Syst. Sci. 74(5), 884–897 (2008)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Lardeux, F., Monfroy, E., Saubion, F.: Interleaved alldifferent constraints: CSP vs. SAT approaches. In: Dochev, D., Pistore, M., Traverso, P. (eds.) AIMSA 2008. LNCS (LNAI), vol. 5253, pp. 380–384. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85776-1_34 CrossRefGoogle Scholar
  19. 19.
    Laurière, J.-L.: A language and a program for stating and solving combinatorial problems. Artif. Intell. 10(1), 29–127 (1978)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Magos, D., Mourtos, I., Appa, G.: A polyhedral approach to the alldifferent system. Math. Program. 132(1–2), 209–260 (2012)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Maher, M., Narodytska, N., Quimper, C.-G., Walsh, T.: Flow-based propagators for the SEQUENCE and related global constraints. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 159–174. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85958-1_11 CrossRefGoogle Scholar
  22. 22.
    Oplobedu, A., Marcovitch, J., Toubier, Y.: CHARME: Un langage industriel de programmation par contraintes, illustré par une application chez renault. In: Proceedings of 9th International Workshop on Expert Systems and their Applications, pp. 55–70 (1989)Google Scholar
  23. 23.
    Petit, T., Régin, J.-C.: The ordered distribute constraint. Int. J. Artif. Intell. Tools 20(4), 617–637 (2011)CrossRefGoogle Scholar
  24. 24.
    Razgon, I., O’Sullivan, B., Provan, G.: Generalizing global constraints based on network flows. In: Fages, F., Rossi, F., Soliman, S. (eds.) CSCLP 2007. LNCS (LNAI), vol. 5129, pp. 127–141. Springer, Heidelberg (2008). doi:10.1007/978-3-540-89812-2_9 CrossRefGoogle Scholar
  25. 25.
    Régin, J.-C.: A filtering algorithm for constraints of difference in CSPs. In: Proceedings of AAAI 1994, pp. 362–367 (1994)Google Scholar
  26. 26.
    Régin, J.-C.: Generalized arc consistency for global cardinality constraint. In: Proceedings of AAAI 1996, pp. 209–215 (1996)Google Scholar
  27. 27.
    Régin, J.-C.: Combination of among and cardinality constraints. In: Barták, R., Milano, M. (eds.) CPAIOR 2005. LNCS, vol. 3524, pp. 288–303. Springer, Heidelberg (2005). doi:10.1007/11493853_22 CrossRefGoogle Scholar
  28. 28.
    Régin, J.-C., Gomes, C.P.: The cardinality matrix constraint. In: Proceedings of CP 2004, pp. 572–587 (2004)Google Scholar
  29. 29.
    Régin, J.-C., Puget, J.-F.: A filtering algorithm for global sequencing constraints. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 32–46. Springer, Heidelberg (1997). doi:10.1007/BFb0017428 CrossRefGoogle Scholar
  30. 30.
    Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Hoboken (1998)MATHGoogle Scholar
  31. 31.
    Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Hoeve, W.-J., Pesant, G., Rousseau, L.-M., Sabharwal, A.: Revisiting the sequence constraint. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 620–634. Springer, Heidelberg (2006). doi:10.1007/11889205_44 CrossRefGoogle Scholar
  33. 33.
    Jan van Hoeve, W., Pesant, G., Rousseau, L.-M., Sabharwal, A.: New filtering algorithms for combinations of among constraints. Constraints 14(2), 273–292 (2009)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Information and Communication TechnologiesUniversitat Pompeu FabraBarcelonaSpain

Personalised recommendations