Solving Constraint Satisfaction Problems Containing Vectors of Unknown Size

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10416)

Abstract

Constraint satisfaction problems (CSPs) are used to solve real-life problems with inherent structures that contain vectors for repeating sets of variables and constraints. Often, the structure of the problem is a part of the problem, since the number of elements in the vector is not known in advance. We propose a method to solve such problems, even when there is no maximal length provided. Our method is based on constructing a vector size CSP from the problem description, and solving it to get the number of elements in the vector. We then use the vector size to construct and solve a CSP that has a specific number of elements. Experimental results show that this method enables fast solving of problems that cannot be solved or even constructed by existing methods.

Keywords

Constraint satisfaction problems Unbounded vector size 

References

  1. 1.
    Adir, A., Levy, R., Salman, T.: Dynamic test data generation for data intensive applications. In: Eder, K., Lourenço, J., Shehory, O. (eds.) HVC 2011. LNCS, vol. 7261, pp. 219–233. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34188-5_19 CrossRefGoogle Scholar
  2. 2.
    Amadini, R., Flener, P., Pearson, J., Scott, J.D., Stuckey, P.J., Tack, G.: Minizinc with strings. arXiv preprint arXiv:1608.03650 (2016)
  3. 3.
    Bessiere, C.: Arc-consistency in dynamic constraint satisfaction problems. In: Proceedings of the Ninth National Conference on Artificial Intelligence, pp. 221–226, July 1991Google Scholar
  4. 4.
    Bin, E., Emek, R., Shurek, G., Ziv, A.: Using a constraint satisfaction formulation and solution techniques for random test program generation. IBM Syst. J. 41(3), 386–402 (2002)CrossRefGoogle Scholar
  5. 5.
    Bin, E., Venezian, E.: Solving the address translation problem as a constraint satisfaction problem. In: CP Meets Verifiation Workshop of the 20th International Conference on Principles and Practice of Constraint Programming, September 2014Google Scholar
  6. 6.
    Dechter, R.: Constraint Processing. Morgan Kaufmann, Burlington (2003)MATHGoogle Scholar
  7. 7.
    Gent, I., Walsh, T.: CSPLib: a problem library for constraints. http://www.csplib.org. Accessed 24 Apr 2017
  8. 8.
    Golden, K., Pang, W.: Constraint reasoning over strings. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 377–391. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45193-8_26 CrossRefGoogle Scholar
  9. 9.
    Gottlob, G., Greco, G., Mancini, T.: Conditional constraint satisfaction: logical foundations and complexity. In: Proceedings of the Twentieth International Joint Conference on Artificial Intelligence, pp. 88–93, January 2007Google Scholar
  10. 10.
    Katz, Y., Rimon, M., Ziv, A.: Generating instruction streams using abstract CSP. In: Proceedings of the 2012 Design, Automation and Test in Europe Conference, pp. 15–20, March 2012Google Scholar
  11. 11.
    Keppens, J., Shen, Q.: Compositional model repositories via dynamic constraint satisfaction with order-of-magnitude preferences. J. Artif. Intell. Res. 21, 499–550 (2004)MathSciNetMATHGoogle Scholar
  12. 12.
    Mackworth, A.: Consistency in networks of relations. Artif. Intell. 8(1), 99–118 (1977)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Mailharro, D.: A classification and constraint-based frame-work for configuration. Artif. Intell. Eng. Des. Anal. Manuf. J. 12(4), 383–397 (1998)Google Scholar
  14. 14.
    Mittal, S., Falkenhainer, B.: Dynamic constraint satisfaction. In: Proceedings of the Eighth National Conference on Artificial Intelligence, pp. 25–32, July 1990Google Scholar
  15. 15.
    Naveh, Y., Rimon, M., Jaeger, I., Katz, Y., Vinov, M., Marcus, E., Shurek, G.: Constraint-based random stimuli generation for hardware verification. AI Mag. 28(3), 13–30 (2007)Google Scholar
  16. 16.
    Sabin, M., Freuder, E.C., Wallace, R.J.: Greater efficiency for conditional constraint satisfaction. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 649–663. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45193-8_44 CrossRefGoogle Scholar
  17. 17.
    Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A symbolic execution framework for JavaScript. In: IEEE Symposium on Security and Privacy, pp. 513–528, May 2010Google Scholar
  18. 18.
    Schenner, G., Taupe, R.: Encoding object-oriented models in MiniZinc. In: Fifteenth International Workshop on Constraint Modelling and Reformulation, September 2016Google Scholar
  19. 19.
    Scott, J.D., Flener, P., Pearson, J.: Constraint solving on bounded string variables. In: Proceedings of the 12th International Conference on Integration of AI and OR Techniques in Constraint Programming, pp. 375–392, May 2015Google Scholar
  20. 20.
    Soininen, T., Gelle, E., Niemelä, I.: A fixpoint definition of dynamic constraint satisfaction. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 419–433. Springer, Heidelberg (1999). doi:10.1007/978-3-540-48085-3_30 Google Scholar
  21. 21.
    Yokoo, M.: Asynchronous weak-commitment search for solving distributed constraint satisfaction problems. In: Montanari, U., Rossi, F. (eds.) CP 1995. LNCS, vol. 976, pp. 88–102. Springer, Heidelberg (1995). doi:10.1007/3-540-60299-2_6 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.IBM ResearchHaifaIsrael

Personalised recommendations