Generating Linear Invariants for a Conjunction of Automata Constraints

  • Ekaterina Arafailova
  • Nicolas Beldiceanu
  • Helmut Simonis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10416)

Abstract

We propose a systematic approach for generating linear implied constraints that link the values returned by several automata with accumulators after consuming the same input sequence. The method handles automata whose accumulators are increased by (or reset to) some non-negative integer value on each transition. We evaluate the impact of the generated linear invariants on conjunctions of two families of time-series constraints.

References

  1. 1.
    Appa, G., Magos, D., Mourtos, I.: LP relaxations of multiple all_different predicates. In: Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 364–369. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24664-0_25 CrossRefGoogle Scholar
  2. 2.
    Arafailova, E., Beldiceanu, N., Carlsson, M., Flener, P., Francisco Rodríguez, M.A., Pearson, J., Simonis, H.: Systematic derivation of bounds and glue constraints for time-series constraints. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 13–29. Springer, Cham (2016). doi:10.1007/978-3-319-44953-1_2 CrossRefGoogle Scholar
  3. 3.
    Arafailova, E., Beldiceanu, N., Douence, R., Carlsson, M., Flener, P., Rodríguez, M.A.F., Pearson, J., Simonis, H.: Global constraint catalog, volume II, time-series constraints. CoRR abs/1609.08925 (2016). http://arxiv.org/abs/1609.08925
  4. 4.
    Arafailova, E., Beldiceanu, N., Douence, R., Flener, P., Francisco Rodríguez, M.A., Pearson, J., Simonis, H.: Time-series constraints: improvements and application in CP and MIP contexts. In: Quimper, C.-G. (ed.) CPAIOR 2016. LNCS, vol. 9676, pp. 18–34. Springer, Cham (2016). doi:10.1007/978-3-319-33954-2_2 Google Scholar
  5. 5.
    Beldiceanu, N., Carlsson, M., Douence, R., Simonis, H.: Using finite transducers for describing and synthesising structural time-series constraints. Constraints 21(1), 22–40 (2016). Journal fast track of CP 2015: summary. LNCS, vol. 9255, p. 723. Springer, Heidelberg (2015)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Beldiceanu, N., Carlsson, M., Rampon, J.-X., Truchet, C.: Graph invariants as necessary conditions for global constraints. In: Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 92–106. Springer, Heidelberg (2005). doi:10.1007/11564751_10 CrossRefGoogle Scholar
  7. 7.
    Beldiceanu, N., Contejean, E.: Introducing global constraints in CHIP. Math. Comput. Model. 20(12), 97–123 (1994)CrossRefMATHGoogle Scholar
  8. 8.
    Beldiceanu, N., Flener, P., Pearson, J., Van Hentenryck, P.: Propagating regular counting constraints. In: Brodley, C.E., Stone, P. (eds.) AAAI 2014, pp. 2616–2622. AAAI Press, Palo Alto (2014)Google Scholar
  9. 9.
    Beldiceanu, N., Ifrim, G., Lenoir, A., Simonis, H.: Describing and generating solutions for the EDF unit commitment problem with the ModelSeeker. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 733–748. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40627-0_54 CrossRefGoogle Scholar
  10. 10.
    Beldiceanu, N., Carlsson, M., Petit, T.: Deriving filtering algorithms from constraint checkers. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 107–122. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30201-8_11 CrossRefGoogle Scholar
  11. 11.
    Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)CrossRefMATHGoogle Scholar
  12. 12.
    Charnley, J.W., Colton, S., Miguel, I.: Automatic generation of implied constraints. In: ECAI 2006. Frontiers in AI and Applications, vol. 141, pp. 73–77. IOS Press (2006)Google Scholar
  13. 13.
    Dincbas, M., Simonis, H., Hentenryck, P.V.: Solving the car-sequencing problem in constraint logic programming. In: ECAI, pp. 290–295 (1988)Google Scholar
  14. 14.
    Rodríguez, M.A.F., Flener, P., Pearson, J.: Implied constraints for automaton constraints. In: Gottlob, G., Sutcliffe, G., Voronkov, A. (eds.) GCAI 2015. EasyChair Proceedings in Computing, vol. 36, pp. 113–126 (2015)Google Scholar
  15. 15.
    Frisch, A., Miguel, I., Walsh, T.: Extensions to proof planning for generating implied constraints. In: 9th Symposium on the Integration of Symbolic Computation and Mechanized Reasoning (2001)Google Scholar
  16. 16.
    Gomory, R.: Outline of an algorithm for integer solutions to linear programs. Bull. Am. Math. Soc. 64, 275–278 (1958)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Hansen, P., Caporossi, G.: Autographix: an automated system for finding conjectures in graph theory. Electron. Notes Discret. Math. 5, 158–161 (2000)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Hooker, J.N.: Integrated Methods for Optimization, 2nd edn. Springer Publishing Company, New York (2011). IncorporatedMATHGoogle Scholar
  19. 19.
    Lee, J.: All-different polytopes. J. Comb. Optim. 6(3), 335–352 (2002)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Marchand, H., Martin, A., Weismantel, R., Wolsey, L.A.: Cutting planes in integer and mixed integer programming. Discret. Appl. Math. 123(1–3), 397–446 (2002)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Menana, J.: Automata and Constraint Programming for Personnel Scheduling Problems. Theses, Université de Nantes, October 2011. https://tel.archives-ouvertes.fr/tel-00785838
  22. 22.
    Menana, J., Demassey, S.: Sequencing and counting with the multicost-regular constraint. In: Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 178–192. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01929-6_14 CrossRefGoogle Scholar
  23. 23.
    Pesant, G.: A filtering algorithm for the stretch constraint. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 183–195. Springer, Heidelberg (2001). doi:10.1007/3-540-45578-7_13 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ekaterina Arafailova
    • 1
  • Nicolas Beldiceanu
    • 1
  • Helmut Simonis
    • 2
  1. 1.TASC (LS2N), IMT AtlantiqueNantesFrance
  2. 2.Insight Centre for Data AnalyticsUniversity College CorkCorkIreland

Personalised recommendations