An Incomplete Constraint-Based System for Scheduling with Renewable Resources

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10416)

Abstract

In this paper, we introduce a new framework for managing several kinds of renewable resources, including disjunctive resources, cumulative resources, and resources with setup times. In this framework, we use a list scheduling approach in which a priority order between activities must be determined to solve resource usage conflicts. In this context, we define a new differentiable constraint-based local search invariant which transforms a priority order into a full schedule and which incrementally maintains this schedule in case of change in the order. On top of that, we use multiple neighborhoods and search strategies, and we get new best upper bounds on several scheduling benchmarks.

References

  1. 1.
    Aggoun, A., Beldiceanu, N.: Extending CHIP in order to solve complex scheduling and placement problems. Math. Comput. Modell. 17(7), 57–73 (1993)CrossRefGoogle Scholar
  2. 2.
    Allahverdi, A., Ng, C., Cheng, T., Kovalyov, M.Y.: A survey of scheduling problems with setup times or costs. Eur. J. Oper. Res. 187(3), 985–1032 (2008)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Artigues, C., Feillet, D.: A branch and bound method for the job-shop problem with sequence-dependent setup times. Ann. Oper. Res. 159(1), 135–159 (2008)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Artigues, C., Michelon, P., Reusser, S.: Insertion techniques for static and dynamic resource constrained project scheduling. Eur. J. Oper. Res. 149(2), 249–267 (2003)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Babin, G., Deneault, S., Laporte, G.: Improvements to the Or-opt heuristic for the symmetric traveling salesman problem. J. Oper. Res. Soc. 58, 402–407 (2007)CrossRefMATHGoogle Scholar
  6. 6.
    Balas, E., Simonetti, N., Vazacopoulos, A.: Job shop scheduling with setup times, deadlines and precedence constraints. J. Sched. 11(4), 253–262 (2008)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bender, M.A., Cole, R., Demaine, E.D., Farach-Colton, M., Zito, J.: Two simplified algorithms for maintaining order in a list. In: Möhring, R., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 152–164. Springer, Heidelberg (2002). doi:10.1007/3-540-45749-6_17 CrossRefGoogle Scholar
  8. 8.
    Brucker, P., Drexl, A., Möring, R., Neumann, K., Pesch, E.: Resource-constrained project scheduling: notation, classification, models, and methods. Eur. J. Oper. Res. 112(1), 3–41 (1999)CrossRefMATHGoogle Scholar
  9. 9.
    Brucker, P., Thiele, O.: A branch and bound method for the general-shop problem with sequence dependent setup-times. Oper. Res. Spekt. 18(3), 145–161 (1996)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Carlier, J.: The one machine sequencing problem. Eur. J. Oper. Res. 11, 42–47 (1982)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Carlier, J., Pinson, E.: Adjustment of heads and tails for the job-shop problem. Eur. J. Oper. Res. 78, 146–161 (1994)CrossRefMATHGoogle Scholar
  12. 12.
    Croce, F.D.: Generalized pairwise interchanges and machine scheduling. Eur. J. Oper. Res. 83(2), 310–319 (1995)CrossRefMATHGoogle Scholar
  13. 13.
    Croes, G.A.: A method for solving traveling salesman problems. Oper. Res. 6, 791–812 (1958)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Glover, F., Laguna, M.: Tabu search. In: Modern Heuristic Techniques for Combinatorial Problems, pp. 70–141. Blackwell Scientific Publishing (1993)Google Scholar
  15. 15.
    Godard, D., Laborie, P., Nuijten, W.: Randomized large neighborhood search for cumulative scheduling. In: Proceedings of the 15th International Conference on Automated Planning and Scheduling (ICAPS 2005), pp. 81–89 (2005)Google Scholar
  16. 16.
    González, M.A., Vela, C.R., Varela, R.: A new hybrid genetic algorithm for the job shop scheduling problem with setup times. In: Proceedings of the 18th International Conference on Automated Planning and Scheduling (ICAPS 2008), pp. 116–123 (2008)Google Scholar
  17. 17.
    González, M.A., Vela, C.R., Varela, R.: Genetic algorithm combined with tabu search for the job shop scheduling problem with setup times. In: Mira, J., Ferrández, J.M., Álvarez, J.R., Paz, F., Toledo, F.J. (eds.) IWINAC 2009. LNCS, vol. 5601, pp. 265–274. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02264-7_28 CrossRefGoogle Scholar
  18. 18.
    Grimes, D., Hebrard, E.: Job shop scheduling with setup times and maximal time-lags: a simple constraint programming approach. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 147–161. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13520-0_19 CrossRefGoogle Scholar
  19. 19.
    Grimes, D., Hebrard, E.: Solving variants of the job shop scheduling problem through conflict-directed search. INFORMS J. Comput. 27(2), 268–284 (2015)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Hartmann, S.: A competitive genetic algorithm for resource-constrained project scheduling. Naval Res. Logist. 45, 733–750 (1997)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Ilog: IBM ILOG CPLEX and CpOptimizer. http://www-03.ibm.com/software/products/
  22. 22.
    Katriel, I., Michel, L., Van Hentenryck, P.: Maintaining longest paths incrementally. Constraints 10(2), 159–183 (2005)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Kolisch, R., Hartmann, S.: Heuristic algorithms for solving the resource-constrained project scheduling problem: classification and computational analysis. In: Handbook on Recent Advances in Project Scheduling, pp. 147–178. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  24. 24.
    Kolisch, R., Hartmann, S.: Experimental investigation of heuristics for resource-constrained project scheduling: an update. Eur. J. Oper. Res. 174(1), 23–37 (2006)CrossRefMATHGoogle Scholar
  25. 25.
    Mastrolilli, M., Gambardella, L.: Effective neighborhood functions for the flexible job shop problem. J. Sched. 3(1), 3–20 (2000)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Michel, L., Van Hentenryck, P.: Iterative relaxations for iterative flattening in cumulative scheduling. In: Proceedings of the 14th International Conference on Automated Planning and Scheduling (ICAPS 2004), pp. 200–208 (2004)Google Scholar
  27. 27.
    Mladenovíc, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24(11), 1097–1100 (1997)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Nuijten, W.P.M., Aarts, E.H.L.: A computational study of constraint satisfaction for multiple capacitated job shop scheduling. Eur. J. Oper. Res. 90(2), 269–284 (1996)CrossRefMATHGoogle Scholar
  29. 29.
    Oddi, A., Cesta, A., Policella, N., Smith, S.F.: Iterative flattening search for resource constrained scheduling. J. Intell. Manuf. 21, 17–30 (2010)CrossRefGoogle Scholar
  30. 30.
    Pinedo, M.: Scheduling: Theory, Algorithms, and Systems. Springer, New York (2012). doi:10.1007/978-1-4614-2361-4 CrossRefMATHGoogle Scholar
  31. 31.
    Pralet, C., Verfaillie, G.: Dynamic online planning and scheduling using a static invariant-based evaluation model. In: Proceedings of the 23rd International Conference on Automated Planning and Scheduling (ICAPS 2013), pp. 171–179 (2013)Google Scholar
  32. 32.
    Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Solving the resource constrained project scheduling problem with generalized precedences by lazy clause generation. CoRR abs/1009.0347 (2010)Google Scholar
  33. 33.
    Valls, V., Ballestín, F., Quintanilla, S.: Justification and RCPSP: a technique that pays. Eur. J. Oper. Res. 165(2), 375–386 (2005)CrossRefMATHGoogle Scholar
  34. 34.
    Van Cauwelaert, S., Dejemeppe, C., Monette, J.N., Schaus, P.: Efficient filtering for the unary resource with family-based transition times. In: Proceedings of the 22nd International Conference on Principles and Practice of Constraint Programming (CP 2016), pp. 520–535 (2016)Google Scholar
  35. 35.
    Van Hentenryck, P., Michel, L.: Constraint-Based Local Search. MIT Press, Cambridge (2005)MATHGoogle Scholar
  36. 36.
    Vilím, P.: Edge finding filtering algorithm for discrete cumulative resources in O(k n log n). In: Proceedings of the 15th International Conference on Principles and Practice of Constraint Programming (CP 2009), pp. 802–816 (2009)Google Scholar
  37. 37.
    Vilím, P.: Timetable edge finding filtering algorithm for discrete cumulative resources. In: Achterberg, T., Beck, J.C. (eds.) CPAIOR 2011. LNCS, vol. 6697, pp. 230–245. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21311-3_22 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.ONERA – The French Aerospace LabToulouseFrance

Personalised recommendations