Defining and Evaluating Heuristics for the Compilation of Constraint Networks

  • Jean-Marie Lagniez
  • Pierre Marquis
  • Anastasia Paparrizou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10416)

Abstract

Several branching heuristics for compiling in a top-down fashion finite-domain constraint networks into multi-valued decision diagrams (MDD) or decomposable multi-valued decision graphs (MDDG) are empirically evaluated, using the cn2mddg compiler. This MDDG compiler has been enriched with various additional branching rules. These rules can be gathered into two families, the one consisting of heuristics for the satisfaction problem (which are suited to compiling networks into MDD representations) and the family of heuristics favoring decompositions (which are relevant when the MDDG language is targeted). Our empirical investigation on a large dataset shows the value of decomposability (targeting MDDG allows for compiling many more instances and leads to much smaller compiled representations). The well-known (Dom/Wdeg) heuristics appears as the best choice for compiling networks into MDD. When MDDG is the target, a new rule, based on a dynamic, yet parsimonious use of hypergraph partitioning for the decomposition purpose turns out to be the best option. As expected, the best heuristics for the satisfaction problem perform better than the best heuristics favoring decompositions when MDD is targeted, and the converse is the case when MDDG is targeted.

Keywords

Knowledge compilation Top-down compiler Heuristics 

References

  1. 1.
    Amilhastre, J., Fargier, H., Marquis, P.: Consistency restoration and explanations in dynamic CSPs application to configuration. Artif. Intell. 135(1–2), 199–234 (2002)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Amilhastre, J., Fargier, H., Niveau, A., Pralet, C.: Compiling CSPs: a complexity map of (non-deterministic) multivalued decision diagrams. Int. J. Artif. Intell. Tools 23(4) (2014)Google Scholar
  3. 3.
    Bart, A., Koriche, F., Lagniez, J.M., Marquis, P.: An improved CNF encoding scheme for probabilistic inference. In: Proceedings of ECAI 2016, pp. 613–621 (2016)Google Scholar
  4. 4.
    Bavelas, A.: Communication patterns in task-oriented groups. J. Acoust. Soc. Am. 22(6), 725–730 (1950)CrossRefGoogle Scholar
  5. 5.
    Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Soc. 25(2), 163–177 (2001)CrossRefMATHGoogle Scholar
  6. 6.
    Brandes, U.: On variants of shortest-path betweenness centrality and their generic computation. Soc. Netw. 30(2), 136–145 (2008)CrossRefGoogle Scholar
  7. 7.
    Catalyürek, U., Aykanat, C.: PaToH (Partitioning Tool for Hypergraphs), pp. 1479–1487. Encyclopedia of Parallel Computing (2011)Google Scholar
  8. 8.
    Darwiche, A.: Decomposable negation normal form. J. ACM 48(4), 608–647 (2001)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Darwiche, A.: New advances in compiling CNF into decomposable negation normal form. In: Proceedings of ECAI 2004, pp. 328–332 (2004)Google Scholar
  10. 10.
    Darwiche, A., Hopkins, M.: Using recursive decomposition to construct elimination orders, jointrees, and dtrees. In: Benferhat, S., Besnard, P. (eds.) ECSQARU 2001. LNCS (LNAI), vol. 2143, pp. 180–191. Springer, Heidelberg (2001). doi:10.1007/3-540-44652-4_17 CrossRefGoogle Scholar
  11. 11.
    Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for network flow problems. J. ACM 19(2), 248–264 (1972). http://doi.acm.org/10.1145/321694.321699 CrossRefMATHGoogle Scholar
  12. 12.
    Fargier, H., Marquis, P.: On the use of partially ordered decision graphs in knowledge compilation and quantified Boolean formulae. In: Proceedings of AAAI 2006, pp. 42–47 (2006)Google Scholar
  13. 13.
    Gergov, J., Meinel, C.: Efficient analysis and manipulation of OBDDs can be extended to FBDDs. IEEE Trans. Comput. 43(10), 1197–1209 (1994)CrossRefMATHGoogle Scholar
  14. 14.
    Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by weighting constraints. In: Proceedings of ECAI 2004, pp. 146–150 (2004)Google Scholar
  16. 16.
    Huang, J., Darwiche, A.: The language of search. J. Artif. Intell. Res. 29, 191–219 (2007)MathSciNetMATHGoogle Scholar
  17. 17.
    Koriche, F., Lagniez, J.M., Marquis, P., Thomas, S.: Compiling constraint networks into multivalued decomposable decision graphs. In: Proceedings of IJCAI 2015, pp. 332–338 (2015)Google Scholar
  18. 18.
    Lecoutre, C., Sais, L., Tabary, S., Vidal, V.: Reasoning from last conflict(s) in constraint programming. Artif. Intell. 173(18), 1592–1614 (2009)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Marinescu, R., Dechter, R.: Dynamic orderings for AND/OR branch-and-bound search in graphical models. In: Proceedings of ECAI 2006, pp. 138–142 (2006)Google Scholar
  20. 20.
    Michel, L., Hentenryck, P.: Activity-based search for black-box constraint programming solvers. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 228–243. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29828-8_15 CrossRefGoogle Scholar
  21. 21.
    Narodytska, N., Walsh, T.: Constraint and variable ordering heuristics for compiling configuration problems. In: Proceedings of IJCAI 2007, pp. 149–154 (2007)Google Scholar
  22. 22.
    Oztok, U., Darwiche, A.: On compiling CNF into decision-DNNF. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 42–57. Springer, Cham (2014). doi:10.1007/978-3-319-10428-7_7 Google Scholar
  23. 23.
    Refalo, P.: Impact-based search strategies for constraint programming. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 557–571. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30201-8_41 CrossRefGoogle Scholar
  24. 24.
    Sang, T., Beame, P., Kautz, H.A.: Performing Bayesian inference by weighted model counting. In: Proceedings of AAAI 2005, pp. 475–482 (2005)Google Scholar
  25. 25.
    Stoer, M., Wagner, F.: A simple min-cut algorithm. J. ACM 44(4), 585–591 (1997)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jean-Marie Lagniez
    • 1
  • Pierre Marquis
    • 1
  • Anastasia Paparrizou
    • 1
  1. 1.CRIL, U. Artois & CNRSLensFrance

Personalised recommendations