Abstract
In recent decades, healthcare has become increasingly expensive, creating pressure on healthcare providers to cut costs while maintaining or improving quality. Operations research can play an important role in supporting such efforts. A key challenge faced by hospital planners is scheduling and management of operating rooms, as operating rooms typically provide highly specialized care, require significant resources, and contribute significantly to a hospital’s bottom line. We describe recent work on hospital operating room management at Lucile Packard Children’s Hospital Stanford. We describe preliminary outcomes of three projects aimed at improving the efficiency of the hospital’s operating rooms: machine learning to improve surgical case length estimation; queuing analysis to improve operational efficiency; and integer programming to schedule cases to reduce surgical delays.
Keywords
- Healthcare
- Operations management
- Optimization
- Machine learning
- Queueing
This is a preview of subscription content, access via your institution.
References
Aleman, D., Brandeau, M.L., Carter, M.W., Scheinker, D.: (Draft) Healthcare systems engineering: an analytical approach. Springer Publishers, New York
Banditori, C., Cappanera, P., Visintin, F.: A combined optimization-simulation approach to the master surgical scheduling problem. IMA J. Manage. Math. 24(2), 155–187 (2013)
Bravo, F., Levi, R., Ferrari, L.R., McManus, M.L.: The nature and sources of variability in pediatric surgical case duration. Paediatr. Anaesth. 25(10), 999–1006 (2015)
Cappanera, P., Visintin, F., Banditori, C.: Comparing resource balancing criteria in master surgical scheduling: a combined optimisation-simulation approach. Int. J. Prod. Econ. 158, 179–196 (2014)
Cappanera, P., Visintin, F., Banditori, C.: Addressing conflicting stake-holders priorities in surgical scheduling by goal programming. Flex. Serv. Manuf. J. Epub. (2016) (ahead of print)
Cardoen, B., Demeulemeester, E., Beliën, J.: Operating room planning and scheduling: a literature review. Eur. J. Oper. Res. 201(3), 921–932 (2010)
Dexter, F., Epstein, R.H., Penning, D.H.: Statistical analysis of postanesthesia care unit staffing at a surgical suite with frequent delays in admission from the operating room: a case study. Anesth. Analg. 92(4), 947–949 (2001)
Dexter, F., Blake, J.T., Penning, D.H., Lubarsky, D.A.: Calculating a potential increase in hospital margin for elective surgery by changing operating room time allocations or increasing nursing staffing to permit completion of more cases: a case study. Anesth. Analg. 94(1), 138–142 (2002)
Dexter, F., Epstein, R.H., Marcon, E., de Matta, R.: Strategies to reduce delays in admission into a postanesthesia care unit from operating rooms. J. Perianesth. Nurs. 20(2), 92–102 (2005)
Durand, A., Kim, H., Pei, F., Petersen, K.: A generalizable, systematic approach to improving perioperative efficiency. Working Paper (2017)
Eijkemans, M.J., van Houdenhoven, M., Nguyen, T., Boersma, E., Steyerberg, E.W., Kazemier, G.: Predicting the unpredictable: a new prediction model for operating room times using individual characteristics and the surgeon’s estimate. Anesthesiology 112(1), 41–49 (2010)
Fairley, M.C., Scheinker, D., Caruso, T.J., Brandeau, M.L.: Improving the efficiency of the operating room environment with a generalizable optimization and machine learning model. Working Paper (2017)
Hiltrop, J.: Modeling neuroscience patient flow and inpatient bed management. Ph.D. Thesis, Massachusetts Institute of Technology (2014)
Kayış, E., Khaniyev, T.T., Suermondt, J., Sylvester, K.: A robust estimation model for surgery durations with temporal, operational, and surgery team effects. Health Care Manag. Sci. 18(3), 222–233 (2015)
Macario, A.: What does one minute of operating room time cost? J. Clin. Anesth. 22(4), 233–236 (2010)
Marcon, E., Dexter, F.: An observational study of surgeons’ sequencing of cases and its impact on postanesthesia care unit and holding area staffing requirements at hospitals. Anesth. Analg. 105(1), 119–126 (2007)
Organisation for Economic Co-operation and Development (OECD): Focus on health spending: OECD health statistics 2015. https://www.oecd.org/health/health-systems/Focus-Health-Spending-2015.pdf (2016)
Schoenmeyr, T., Dunn, P.F., Gamarnik, D., Levi, R., Berger, D.L., Daily, B.J., Levine, W.C., Sandberg, W.S.: A model for understanding the impacts of demand and capacity on waiting time to enter a congested recovery room. Anesthesiology 110(6), 1293–1304 (2009)
Shippert, R.D.: A study of time-dependent operating room fees and how to save $100 000 by using time-saving products. Am. J. Cosmetic. Surg. 22(1), 25–34 (2005)
Smallman, B., Dexter, F.: Optimizing the arrival, waiting, and npo times of children on the day of pediatric endoscopy procedures. Anesth. Analg. 110(3), 879–887 (2010)
Stepaniak, P.S., Heij, C., Mannaerts, G.H., de Quelerij, M., de Vries, G.: Modeling procedure and surgical times for current procedural terminology-anesthesia-surgeon combinations and evaluation in terms of case-duration prediction and operating room efficiency: a multicenter study. Anesth. Analg. 109(4), 1232–1245 (2009)
Strum, D.P., Sampson, A.R., May, J.H., Vargas, L.G.: Surgeon and type of anesthesia predict variability in surgical procedure times. Anesthesiology 92(5), 1454–1466 (2000)
Visintin, F., Cappanera, P., Banditori, C.: Evaluating the impact of flexible practices on the master surgical scheduling process: an empirical analysis. Flex. Serv. Manuf. J. 28(1–2), 182–205 (2016)
Wright, I.H., Kooperberg, C., Bonar, B.A., Bashein, G.: Statistical modeling to predict elective surgery time. Comparison with a computer scheduling system and surgeon-provided estimates. Anesthesiology 85(6), 1235–1245 (1996)
Zenteno, A.C., Carnes, T., Levi, R., Daily, B.J., Dunn, P.F.: Systematic OR block allocation at a large academic medical center: comprehensive review of a data-driven surgical scheduling strategy. Ann. Surg. 264(6), 973–981 (2016)
Zenteno, A.C., Carnes, T., Levi, R., Daily, B.J., Price, D., Moss, S.C., Dunn, P.F.: Pooled open blocks shorten wait times for nonelective surgical cases. Ann. Surg. 262(1), 60–67 (2015)
Zhou, Z., Miller, D., Master, N., Scheinker, D., Bambos, N., Glynn, P.: Detecting inaccurate predictions of pediatric surgical durations. In: Data Science and Advanced Analytics (DSAA), 2016 IEEE International Conference. IEEE, pp. 452–457 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Scheinker, D., Brandeau, M.L. (2017). Analytical Approaches to Operating Room Management. In: Cappanera, P., Li, J., Matta, A., Sahin, E., Vandaele, N., Visintin, F. (eds) Health Care Systems Engineering. ICHCSE 2017. Springer Proceedings in Mathematics & Statistics, vol 210. Springer, Cham. https://doi.org/10.1007/978-3-319-66146-9_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-66146-9_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-66145-2
Online ISBN: 978-3-319-66146-9
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)