Skip to main content

A Practical Approach to Machine Learning for Clinical Decision Support

Projects at Lucile Packard Children’s Hospital Stanford in Partnership with Stanford Engineering

  • Conference paper
  • First Online:
Health Care Systems Engineering (ICHCSE 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 210))

Included in the following conference series:

Abstract

Machine learning has produced effective clinical decision support tools. The impact of such work is limited by the difficulty of implementing such tools outside the institution where they were designed. The recent wide-spread adoption of Electronic Medical Record systems (EMRs) makes possible the development and application of tools across institutions. We describe three machine learning projects to develop generalizable, EMR-based clinical decision support tools at the cardiac care units of Lucile Packard Children’s Hospital Stanford: false alarm suppression, detection of critical events, and automated identification and detection of drug-drug interactions. These projects utilize flexible statistical and deep learning frameworks to enable automated, patient-specific care. We focus on the practical challenges of implementing such methodology and describe our progress on producing tools useful for our institution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Aboukhalil, A., Nielsen, L., Saeed, M., Mark, R.G., Clifford, G.D.: Reducing false alarm rates for critical arrhythmias using the arterial blood pressure waveform. J. Biomed. Informat. 41(3), 442–451 (2008)

    Article  Google Scholar 

  2. Behar, J., Oster, J., Li, Q., Clifford, G.D.: Ecg signal quality during arrhythmia and its application to false alarm reduction. Biomed. Eng. IEEE Trans. 60(6), 1660–1666 (2013)

    Article  Google Scholar 

  3. Chambrin, M.C., et al.: Alarms in the intensive care unit: how can the number of false alarms be reduced? Critic. Care London 5(4), 184–188 (2001)

    Article  Google Scholar 

  4. Chang, R.F., Wu, W.J., Moon, W.K., Chou, Y.H., Chen, D.R.: Support vector machines for diagnosis of breast tumors on us images. Acad. Radiol. 10(2), 189–197 (2003)

    Article  Google Scholar 

  5. Chowdhury, M.F.M., Lavelli, A.: Fbk-irst: A multi-phase kernel based approach for drug-drug interaction detection and classification that exploits linguistic information. Atlanta, Georgia, USA 351, 53 (2013)

    Google Scholar 

  6. Churpek, M.M., Yuen, T.C., Huber, M.T., Park, S.Y., Hall, J.B., Edelson, D.P.: Predicting cardiac arrest on the wards: a nested case-control study. CHEST J. 141(5), 1170–1176 (2012)

    Article  Google Scholar 

  7. Couto, P., Ramalho, R., Rodrigues, R.: Suppression of false arrhythmia alarms using ECG and pulsatile waveforms. In: Computing in Cardiology Conference (CinC), IEEE, pp. 749–752 (2015)

    Google Scholar 

  8. Cretikos, M., Chen, J., Hillman, K., Bellomo, R., Finfer, S., Flabouris, A., Investigators, M.S., et al.: The objective medical emergency team activation criteria: a case-control study. Resuscitation 73(1), 62–72 (2007)

    Article  Google Scholar 

  9. Eom, J.H., Kim, S.C., Zhang, B.T.: Aptacdss-e: a classifier ensemble-based clinical decision support system for cardiovascular disease level prediction. Exp. Syst. Appl. 34(4), 2465–2479 (2008)

    Article  Google Scholar 

  10. Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E.: (June 13)) PhysioBank, physioToolkit, and physioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)

    Article  Google Scholar 

  11. Hillman, K., Bristow, P., Chey, T., Daffurn, K., Jacques, T., Norman, S., Bishop, G., Simmons, G.: Antecedents to hospital deaths. Intern. Med. J. 31(6), 343–348 (2001)

    Article  Google Scholar 

  12. Hoffman, J.I., Kaplan, S.: The incidence of congenital heart disease. J. Am. College Cardiol. 39(12), 1890–1900 (2002)

    Article  Google Scholar 

  13. Johnson, A.E., Pollard, T.J., Shen, L., Lehman, LwH, Feng, M., Ghassemi, M., Moody, B., Szolovits, P., Celi, L.A., Mark, R.G.: Mimic-iii, a freely accessible critical care database. Scientific Data 3 (2016)

    Google Scholar 

  14. Kohn, M., Sun, J., Knoop, S., Shabo, A., Carmeli, B., Sow, D., Syed-Mahmood, T., Rapp, W., et al., Ibms Health Analytics and Clinical Decision Support. IMIA Yearbook pp. 154–162 (2014)

    Google Scholar 

  15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  16. Lawless, S.T.: Crying wolf: false alarms in a pediatric intensive care unit. Critic. Care Med. 22(6), 981–985 (1994)

    Article  MathSciNet  Google Scholar 

  17. Liu, S., Tang, B., Chen, Q., Wang, X.: Drug-drug interaction extraction via convolutional neural networks.In: Computational and Mathematical Methods in Medicine (2016)

    Google Scholar 

  18. Miller, D.: Automated Identification of Drug-Drug Interactions in Pediatric Congestive Heart Failure Patients. Unpublished. arXiv: 1702.04615v1 (2016)

  19. Miller, D.: Nlp and Deep Learning for DDI Identification in Pediatric Congestive Heart Failure, Manuscript in preparation (2017)

    Google Scholar 

  20. Miller, D., Scheinker, D., Shin, A.: Application of Deep Learning to Predict Crisis Events in Hospitalized Infants and Children with Congestive Heart Disease, Manuscript in preparation (2017)

    Google Scholar 

  21. Mirowski, P.W., LeCun, Y., Madhavan, D., Kuzniecky, R.: Comparing svm and convolutional networks for epileptic seizure prediction from intracranial eeg. In: Machine Learning for Signal Processing, 2008. MLSP 2008. IEEE Workshop on, IEEE, pp. 244–249 (2008)

    Google Scholar 

  22. Oster, M.E., Lee, K.A., Honein, M.A., Riehle-Colarusso, T., Shin, M., Correa, A.: Temporal trends in survival among infants with critical congenital heart defects. Pediatrics. peds–2012 (2013)

    Google Scholar 

  23. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)

    Google Scholar 

  24. Sayers, E.W., Barrett, T., Benson, D.A., Bolton, E., Bryant, S.H., Canese, K., Chetvernin, V., Church, D.M., DiCuccio, M., Federhen, S., et al.: Database resources of the national center for biotechnology information. Nucl. Acids Res. 39(suppl 1), D38–D51 (2011)

    Article  Google Scholar 

  25. Schmidhuber, J.: Deep learning in neural networks: An overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  26. Segura-Bedmar, I., Martínez, P., Herrero-Zazo, M.: Lessons learnt from the ddiextraction-2013 shared task. J. Biomed. Informat. 51, 152–164 (2014)

    Article  Google Scholar 

  27. Ward, A., Miller, D., Miller, K.: Reducing False Arrhythmia Alarms in the Intensive Care Unit. Unpublished report: https://cs229.stanford.edu/proj2015/288_report.pdf (2015)

  28. Wishart, D.S., Knox, C., Guo, A.C., Shrivastava, S., Hassanali, M., Stothard, P., Chang, Z., Woolsey, J.: Drugbank: a comprehensive resource for in silico drug discovery and exploration. Nucl. Acids Res. 34(suppl 1), D668–D672 (2006)

    Article  Google Scholar 

  29. Gm, Xian: An identification method of malignant and benign liver tumors from ultrasonography based on glcm texture features and fuzzy svm. Exp. Syst. Appl. 37(10), 6737–6741 (2010)

    Article  Google Scholar 

  30. Zheng, Y., Liu, Q., Chen, E., Ge, Y., Zhao, J.L.: Time series classification using multi-channels deep convolutional neural networks. In: International Conference on Web-Age Information Management, Springer, pp. 298–310 (2014)

    Google Scholar 

Download references

Acknowledgements

Our work on these projects would not have been possible without the motivation, and feedback received from LPCH physicians and staff. In particular, we thank Christopher Almond, David Rosenthal, Shannon Feehan, Andrew Shin, and John Dykes.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniel Miller , David Scheinker or Nicholas Bambos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Miller, D., Scheinker, D., Bambos, N. (2017). A Practical Approach to Machine Learning for Clinical Decision Support. In: Cappanera, P., Li, J., Matta, A., Sahin, E., Vandaele, N., Visintin, F. (eds) Health Care Systems Engineering. ICHCSE 2017. Springer Proceedings in Mathematics & Statistics, vol 210. Springer, Cham. https://doi.org/10.1007/978-3-319-66146-9_10

Download citation

Publish with us

Policies and ethics