Advertisement

Formalization of the Lindemann-Weierstrass Theorem

  • Sophie BernardEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10499)

Abstract

This article details a formalization in Coq of the Lindemann-Weierstrass theorem which gives a transcendence criterion for complex numbers: this theorem establishes a link between the linear independence of a set of algebraic numbers and the algebraic independence of the exponentials of these numbers. As we follow Baker’s proof, we discuss the difficulties of its formalization and explain how we resolved them in Coq. Most of these difficulties revolve around multivariate polynomials and their relationship with the conjugates of a univariate polynomial. Their study ultimately leads to alternative forms of the fundamental theorem of symmetric polynomials. This formalization uses mainly the Mathcomp library for the part relying on algebra, and the Coquelicot library and the Coq standard library of real numbers for the calculus part.

Keywords

Coq Formal proofs Multivariate polynomials Polynomial conjugates Transcendance 

References

  1. 1.
    Formalization of the Lindemann-Weierstrass theorem in Coq. http://www-sop.inria.fr/marelle/lindemann/
  2. 2.
    Baker, A.: Transcendental Number Theory. Cambridge University Press, Cambridge (1990)zbMATHGoogle Scholar
  3. 3.
    Bernard, S., Bertot, Y., Rideau, L., Strub, P.Y.: Formal proofs of transcendence for e and pi as an application of multivariate and symmetric polynomials. In: Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs, pp. 76–87. ACM (2016)Google Scholar
  4. 4.
    Bingham, J.: Formalizing a proof that e is transcendental. J. Formaliz. Reason. 4(1), 71–84 (2011)MathSciNetGoogle Scholar
  5. 5.
    Boldo, S., Lelay, C., Melquiond, G.: Coquelicot: a user-friendly library of real analysis for Coq. Math. Comput. Sci. 9(1), 41–62 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cohen, C.: Finmap library. http://github.com/math-comp/finmap
  7. 7.
    Cohen, C.: Formalized algebraic numbers: construction and first-order theory. Ph.D. thesis, Citeseer (2013)Google Scholar
  8. 8.
    Coq development team: the Coq proof assistant (2008). http://coq.inria.fr
  9. 9.
    Gonthier, G.: Formal proof – the four-color theorem. Not. AMS 55(11), 1382–1393 (2008)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Gonthier, G., et al.: A machine-checked proof of the odd order theorem. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 163–179. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39634-2_14 CrossRefGoogle Scholar
  11. 11.
    Hermite, C.: Sur la fonction exponentielle. In: Comptes-Rendus de l’Académie des Sciences, vol. 77, pp. 18–24, 74–79, 226–233, 285–293. Paris (1873)Google Scholar
  12. 12.
    Lang, S.: Algebra. Graduate Texts in Mathematics, vol. 211, 3rd edn. Springer, New York (2002)CrossRefzbMATHGoogle Scholar
  13. 13.
    Lindemann, F.: Über die zahl \(\pi \). Math. Ann. 20(2), 213–225 (1882)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Liouville, J.: Sur des classes très-étendues de quantités dont la valeur n’est ni algébrique, ni même réductible à des irrationnelles algébriques. J. de mathématiques pures et appliquées 16, 133–142 (1851)Google Scholar
  15. 15.
    Muñoz, C., Narkawicz, A.: Formalization of a representation of Bernstein polynomials and applications to global optimization. J. Autom. Reason. 51(2), 151–196 (2013)CrossRefzbMATHGoogle Scholar
  16. 16.
    Weierstrass, K.: Zu Lindemann’s Abhandlung: “Über die Ludolph’sche Zahl.”. Akademie der Wissenschaften (1885)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Université Côte d’Azur, InriaValbonneFrance

Personalised recommendations