Abstract
Boolean equation systems are sequences of least and greatest fixpoint equations interpreted over the Boolean lattice. Such equation systems arise naturally in verification problems such as the modal \(\mu \)-calculus model checking problem. Solving a Boolean equation system is a computationally challenging problem, and for this reason, abstraction techniques for Boolean equation systems have been developed. The notion of consistent consequence on Boolean equation systems was introduced to more effectively reason about such abstraction techniques. Prior work on consistent consequence claimed that this notion can be fully characterised by a sound and complete derivation system, building on rules for logical consequence. Our formalisation of the theory of consistent consequence and the derivation system in the proof assistant Coq reveals that the system is, nonetheless, unsound. We propose a fix for the derivation system and show that the resulting system (system CC) is indeed sound and complete for consistent consequence. Our formalisation of the consistent consequence theory furthermore points at a subtle mistake in the phrasing of its main theorem, and how to correct this.
M. van Delft—Partially funded by the European Union’s Horizon 2020 Framework Programme for Research and Innovation under grant agreement no. 674875.
This is a preview of subscription content, access via your institution.
Buying options
References
Bertot, Y., Komendantsky, V.: Fixed point semantics and partial recursion in Coq. In: PPDP, pp. 89–96. ACM (2008)
Cranen, S., Gazda, M., Wesselink, W., Willemse, T.A.C.: Abstraction in fixpoint logic. ACM Trans. Comput. Log. 16(4/29), 29:1–29:39 (2015)
Cranen, S., Groote, J.F., Keiren, J.J.A., Stappers, F.P.M., Vink, E.P., Wesselink, W., Willemse, T.A.C.: An overview of the mCRL2 toolset and its recent advances. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 199–213. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36742-7_15
Dittmann, C.: Positional determinacy of parity games. In: Archive of Formal Proofs (2015)
Garavel, H., Lang, F., Mateescu, R.: Compositional verification of asynchronous concurrent systems using CADP. Acta Informatica 52(4), 337–392 (2015)
Garavel, H., Mateescu, R., Lang, F., Serwe, W.: CADP 2006: a toolbox for the construction and analysis of distributed processes. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 158–163. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73368-3_18
Gazda, M.W., Willemse, T.A.C.: Consistent consequence for boolean equation systems. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 277–288. Springer, Heidelberg (2012). doi:10.1007/978-3-642-27660-6_23
Keiren, J.J.A., Wesselink, W., Willemse, T.A.C.: Liveness analysis for parameterised boolean equation systems. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 219–234. Springer, Cham (2014). doi:10.1007/978-3-319-11936-6_16
Mader, A.: Modal \(\mu \)-calculus, model checking and Gauß elimination. In: Brinksma, E., Cleaveland, W.R., Larsen, K.G., Margaria, T., Steffen, B. (eds.) TACAS 1995. LNCS, vol. 1019, pp. 72–88. Springer, Heidelberg (1995). doi:10.1007/3-540-60630-0_4
Mader, A.: Verification of modal properties using boolean equation systems. Ph.D. thesis, Technische Universität München (1997)
Sangiorgi, D.: Introduction to Bisimulation and Coinduction. Cambridge University Press, New York (2011)
Sprenger, C.: A verified model checker for the modal \(\mu \)-calculus in Coq. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 167–183. Springer, Heidelberg (1998). doi:10.1007/BFb0054171
Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math. 5(2), 285–309 (1955)
The Coq Development Team. http://coq.inria.fr
van de Pol, J.C.: Operations on fixpoint equation systems. Unpublished note; available from the author upon request
van Delft, M.E.C.: Consistent consequences formalized. Master’s thesis, Eindhoven University of Technology (2016)
van Delft, M.E.C., Geuvers, H., Willemse, T.A.C. http://doi.org/10.4121/uuid:a06e90c7-9ca1-45df-ad37-e99bdbf75b78
Willemse, T.A.C.: Consistent correlations for parameterised boolean equation systems with applications in correctness proofs for manipulations. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 584–598. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15375-4_40
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
van Delft, M., Geuvers, H., Willemse, T.A.C. (2017). A Formalisation of Consistent Consequence for Boolean Equation Systems. In: Ayala-Rincón, M., Muñoz, C.A. (eds) Interactive Theorem Proving. ITP 2017. Lecture Notes in Computer Science(), vol 10499. Springer, Cham. https://doi.org/10.1007/978-3-319-66107-0_29
Download citation
DOI: https://doi.org/10.1007/978-3-319-66107-0_29
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-66106-3
Online ISBN: 978-3-319-66107-0
eBook Packages: Computer ScienceComputer Science (R0)