Skip to main content

A Formalisation of Consistent Consequence for Boolean Equation Systems

  • Conference paper
  • 910 Accesses

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 10499)

Abstract

Boolean equation systems are sequences of least and greatest fixpoint equations interpreted over the Boolean lattice. Such equation systems arise naturally in verification problems such as the modal \(\mu \)-calculus model checking problem. Solving a Boolean equation system is a computationally challenging problem, and for this reason, abstraction techniques for Boolean equation systems have been developed. The notion of consistent consequence on Boolean equation systems was introduced to more effectively reason about such abstraction techniques. Prior work on consistent consequence claimed that this notion can be fully characterised by a sound and complete derivation system, building on rules for logical consequence. Our formalisation of the theory of consistent consequence and the derivation system in the proof assistant Coq reveals that the system is, nonetheless, unsound. We propose a fix for the derivation system and show that the resulting system (system CC) is indeed sound and complete for consistent consequence. Our formalisation of the consistent consequence theory furthermore points at a subtle mistake in the phrasing of its main theorem, and how to correct this.

M. van Delft—Partially funded by the European Union’s Horizon 2020 Framework Programme for Research and Innovation under grant agreement no. 674875.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-66107-0_29
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-66107-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)

References

  1. Bertot, Y., Komendantsky, V.: Fixed point semantics and partial recursion in Coq. In: PPDP, pp. 89–96. ACM (2008)

    Google Scholar 

  2. Cranen, S., Gazda, M., Wesselink, W., Willemse, T.A.C.: Abstraction in fixpoint logic. ACM Trans. Comput. Log. 16(4/29), 29:1–29:39 (2015)

    MathSciNet  MATH  Google Scholar 

  3. Cranen, S., Groote, J.F., Keiren, J.J.A., Stappers, F.P.M., Vink, E.P., Wesselink, W., Willemse, T.A.C.: An overview of the mCRL2 toolset and its recent advances. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 199–213. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36742-7_15

    CrossRef  MATH  Google Scholar 

  4. Dittmann, C.: Positional determinacy of parity games. In: Archive of Formal Proofs (2015)

    Google Scholar 

  5. Garavel, H., Lang, F., Mateescu, R.: Compositional verification of asynchronous concurrent systems using CADP. Acta Informatica 52(4), 337–392 (2015)

    CrossRef  MathSciNet  Google Scholar 

  6. Garavel, H., Mateescu, R., Lang, F., Serwe, W.: CADP 2006: a toolbox for the construction and analysis of distributed processes. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 158–163. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73368-3_18

    CrossRef  Google Scholar 

  7. Gazda, M.W., Willemse, T.A.C.: Consistent consequence for boolean equation systems. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 277–288. Springer, Heidelberg (2012). doi:10.1007/978-3-642-27660-6_23

    CrossRef  Google Scholar 

  8. Keiren, J.J.A., Wesselink, W., Willemse, T.A.C.: Liveness analysis for parameterised boolean equation systems. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 219–234. Springer, Cham (2014). doi:10.1007/978-3-319-11936-6_16

    CrossRef  MATH  Google Scholar 

  9. Mader, A.: Modal \(\mu \)-calculus, model checking and Gauß elimination. In: Brinksma, E., Cleaveland, W.R., Larsen, K.G., Margaria, T., Steffen, B. (eds.) TACAS 1995. LNCS, vol. 1019, pp. 72–88. Springer, Heidelberg (1995). doi:10.1007/3-540-60630-0_4

    CrossRef  Google Scholar 

  10. Mader, A.: Verification of modal properties using boolean equation systems. Ph.D. thesis, Technische Universität München (1997)

    Google Scholar 

  11. Sangiorgi, D.: Introduction to Bisimulation and Coinduction. Cambridge University Press, New York (2011)

    CrossRef  Google Scholar 

  12. Sprenger, C.: A verified model checker for the modal \(\mu \)-calculus in Coq. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 167–183. Springer, Heidelberg (1998). doi:10.1007/BFb0054171

    CrossRef  Google Scholar 

  13. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math. 5(2), 285–309 (1955)

    CrossRef  MathSciNet  Google Scholar 

  14. The Coq Development Team. http://coq.inria.fr

  15. van de Pol, J.C.: Operations on fixpoint equation systems. Unpublished note; available from the author upon request

    Google Scholar 

  16. van Delft, M.E.C.: Consistent consequences formalized. Master’s thesis, Eindhoven University of Technology (2016)

    Google Scholar 

  17. van Delft, M.E.C., Geuvers, H., Willemse, T.A.C. http://doi.org/10.4121/uuid:a06e90c7-9ca1-45df-ad37-e99bdbf75b78

  18. Willemse, T.A.C.: Consistent correlations for parameterised boolean equation systems with applications in correctness proofs for manipulations. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 584–598. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15375-4_40

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim A. C. Willemse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

van Delft, M., Geuvers, H., Willemse, T.A.C. (2017). A Formalisation of Consistent Consequence for Boolean Equation Systems. In: Ayala-Rincón, M., Muñoz, C.A. (eds) Interactive Theorem Proving. ITP 2017. Lecture Notes in Computer Science(), vol 10499. Springer, Cham. https://doi.org/10.1007/978-3-319-66107-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66107-0_29

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66106-3

  • Online ISBN: 978-3-319-66107-0

  • eBook Packages: Computer ScienceComputer Science (R0)